# Outline

### **Submerged Oil – Background**

### **Project at USCG RDC**

Detection Prototype Test Results

### • Recovery System Development

- Design Phase
- Prototype Build Phase
- Prototype Tests
- Next Steps
  - Field Tests
  - Report



# **Detection and Recovery Issues**

# Highlights since National Academy of Science (USA) Report in 1999

- Third R&D Forum on High Density Oil Spill Response 11-13 March 2002, Brest, France
- Workshop at Coastal Response Research Center, New Hampshire, USA in 2007
- Michel Review paper in 2008.
- Assessment by UK Maritime and Coastguard Agency (MCA) in 2008
- Current guideline being developed under Technical Group of Marine and Environmental Protection Committee (MEPC) of IMO.



### **USCG R&D Center Efforts**

### First Addressed Detection (Hansen et. al. Interspill 2009) Two phases:

- Concepts (4 vendors)
- Prototype Design and build (2 vendors and 2 companies on own funding)



### **Detection Prototype Test Layout** (At Ohmsett, USA)





Acquisition Directorate Research & Development Center

# **Prototype Detection Test Results**

| Requirement                                                                                   | RESON | EIC | BioSonics | CodaOctopus |
|-----------------------------------------------------------------------------------------------|-------|-----|-----------|-------------|
| Identification of heavy oil on sea floor<br>(80% certainty)                                   | Х     | Х   | X         | Х           |
| Ability to detect oil on the sea floor from at least 1 meter away                             | Х     | Х   | X         | Х           |
| Geo-referenced to within 1 meter                                                              | X     | Х   | X         | X           |
| Real time data                                                                                | X     | Х   | X         | х           |
| Able to provide data for all sea floor<br>conditions                                          | Х     | Х   | X         | Х           |
| Search a one square mile area in a 12-<br>hour shift                                          | Х     | Х   | X         | Х           |
| Water currents of up to 1.5 knots                                                             | Х     | Х   | X         | X           |
| Operate in up to 5 foot seas                                                                  | X     | Х   | X         | X           |
| Operable during the day and night                                                             | Х     | Х   | X         | X           |
| Able to be set up within 6 hours                                                              | X     | Х   | X         | X           |
| Easily deployable and transportable                                                           | Х     | Х   | X         | X           |
| Capable of being deployed from a vessel<br>of opportunity and a variety of other<br>platforms | Х     | Х   | X         | Х           |

#### **RESON Sonar and EIC Laser Fluorometer deployed during Deepwater**



Acquisition Directorate Research & Development Center

# **Recovery Development Approach**

### **Developed Recovery Specifications – Three Phases**

- Design (Hansen et. al. IOSC 2011)
- Prototype Build and Test
- Field tests

### **Three contracts:**

- Alion Science and Technology Corporation
- Marine Pollution Control
- Oil Stop Division of American Pollution Control



# **Ohmsett Trays for Recovery Tests**





### **Three Oil Types:**

• Viscoscity 50,000-180.000 cSt

### **Two Sands:**

- Course and fine
- Not packed





# Alion Science & Technology Design

- Lightweight system based on Remotely Operated Vehicles (ROV)
- Uses SONAR for detect





### **Recovery Configuration**





### **Alion – Design Trade-Offs**





### **Alion - Testing at Ohmsett**





# **Alion – Ohmsett Testing**

#### **In Operation**



#### **Close up of Nozzel**









UNCLASS/R&D Center

100 100 4

### **Alion - Initial Sonar Results**





# Marine Pollution Control (MPC) Design

- Based on existing manned submersible
- Uses sonar, EIC and visual for detection





# **MPC Submersible Design Components**

#### **Existing Submersible**



### **Proposed Docking Station**





# **MPC Components Available**

#### Multi-degree of Freedom Robot Arm



#### **Pump and debris control**





# **MPC Test Rig Assembling at Ohmsett**





### **MPC – Ohmsett Testing**



### **Test Rig**

#### **Underwater View**





### **MPC – Ohmsett Testing**





### **MPC Ohmsett testing**



### **View From Camera**

#### **View from Above**





# MPC Ohmsett Results (oil and sonar)



### **View of Tray**

### **Sonar Data (Oil removed in right figure)**







# **Oil Stop Design**

- Based on submersible dredge
- Uses visual for detection
- Weight reduction and increased depth capability needed



### **Eddy Pump**





# **Oil Stop Existing Components**









### **Conveyor Belt Skimmers**





### **Oil stop Testing at Ohmsett** (Excavator and tanks)



### Views of Operations





# **Oil stop Testing at Ohmsett**





# **Submerged Oil Results**

Systems selected as having unique capabilities but need more work to decrease amount of water/silt collected:

- One is lightweight; ROV may need more power and intake nozzle may need to be smaller.
- One can get deeper and stay longer; (manned submersible) but may have high operational requirements
- One could handle harsh wind/wave conditions but large operation requirements and environmental impact

### **Configuration of system can vary with spill**



### **Next Steps**

- Field tests in FY2012 without oil for Alion and Oil Stop
  - Components not tested at Ohmsett
  - MPC previously evaluated in field trial by company (Usher, 2008)
- Monitoring results from Deepwater Horizon and Enbridge Pipeline (Michigan, USA, heavy oil in river system) with mixed sand and oil
- Comparison of operations with divers for specific spill scenarios
- Final Report later this year



### **Questions?**

### **Non-Attribution Policy**

Opinions or assertions expressed in this paper are solely those of the author and do not necessarily represent the views of the U.S. Government. The use of manufacturer names and product names are included for descriptive purposes only and do not reflect endorsement by the author or the U.S. Coast Guard of any manufacturer or product.

