Assessment of Hydrocarbon Inputs and Temporal Evaluation in Guanabara Bay, Brazil

M.F.G. Meniconi PETROBRAS/CENPES, Research & Development Center

> C.G. Massone Gorceix Foundation

A.L. Scofield PUC- Catholic University, Department of Chemistry Rio de Janeiro - RJ – Brazil

Abstract

The 16 EPA priority polycyclic aromatic hydrocarbons (PAH) and their alkylated homologues (total of 38 compounds) have been quantified in 21 sediment samples from Guanabara Bay, Rio de Janeiro, Brazil, in two campaigns. The first campaign was carried out immediately after the oil spill accident in January/2000 and the second, three years later. It was observed a slight difference in total PAH level from one measurement to another, indicating a higher PAH concentration of the samples in 2000 as a result of both petrogenic and pyrolitic contribution to the sediments. The first field study presented a range of PAH concentration from 559 to 58,439 ng/g dry weight (median value of 4,877 ng/g) while the 2003 campaign showed PAH varying from 400 to 52,384 ng/g dry weight (median value of 3,603 ng/g). The hydrocarbon sources identification have been done by using PAH indexes of the samples studied and statistical analysis (PCA), indicating a mixed pattern of petrogenic and pyrolytic introduction in the Guanabara Bay sediments. Being the bay a complex urban area, the anthropogenic processes of introduction of PAH may be from the extensive industrial and domestic waste discharges, indirect atmospheric deposition of incomplete fuel oil combustion, accidental oil spills and direct runoff.

Keywords: Polycyclic Aromatic Hydrocarbons, Souce, Compositional Index, Principal Component Analysis

Introduction

Polycyclic aromatic hydrocarbons (PAHs), present worldwide in the environmental ecosystems, may be introduced by natural and anthropogenic processes from direct runoff and discharges and indirect atmospheric deposition (Yunker et al., 2000, Stout et al., 2001, Readman et al., 2002). Sources of naturally occurring PAHs include natural fires, natural oil seepage and recent biological or diagenetic processes - biogenic origin (Hites and Biemann, 1975, Youngblood and Blumer, 1975, Philp, 1985, Kennicutt II et al., 1994, Kennicutt II, 1995). Anthropogenic sources of PAHs are combustion or pyrolysis of organic matter (petroleum, coal, wood) and waste and releases/spills of petroleum and derivatives (river runoff, sewage outfalls, maritime transport, pipelines) (Lipatou and Albaigés, 1994, Budzinski et al., 1997, Elias et al., 2000). These compounds tend to interact with the different types of environmental compartments and are subject to many processes that lead to geochemical fates such as physical-chemical transformation, biodegradation and photo-oxidation. Numerous successful studies on sources of PAHs in environmental samples have relied on the increasingly rigorous and quantitative characterization of not only the 16 EPA priority pollutant PAHs but also on the PAH homologue distributions.

In this study, the sources of PAHs in the estuarine sediment of Guanabara Bay, Brazil are investigated in two campaigns: years 2000 and 2003. The objectives of the study were to identify the probable sources of hydrocarbons in the bay, considering the oil spill accident in January 2000. The bay is an urban ecosystem with a complex river drainage basin (about 50 rivers and channels), which is used to dispose of extensive municipal sewage, usually with minimal or no treatment, urban runoff and industrial waste of the second largest city in Brazil, with almost 10 million people. Figure 1 exhibits the points of municipal and industrial waste in Guanabara Bay (Feema, 2003).

Methods

Study Area and Sampling

The Guanabara Bay sampling strategy was based on visual and aerial observations of the ecosystem, reflecting areas potentially affected and unaffected by the spilled oil in January 2000 (Meniconi et al., 2002). The sediment samples were collected using cores and dredges from the intertidal and subtidal regions of the bay. A subsample of the top 3 cm of the sediment was transferred into wide-mouth glass jars with Teflon caps and then stored frozen prior to analysis. Figure 2 shows the geographical location of the sample stations in Guanabara Bay.

In the first campaign (year 2000) the samples were collected from 21 stations, just 10 days after the accident. In the second campaign (year 2003) the samples were collected from the same stations of 2000, which allowed a temporal investigation on the region.

Hydrocarbon Extraction and Determination

The analytical procedure for PAH for the sediment samples was based on standard methods as previously described (Meniconi et al., 2003). The samples were extracted following the methodology in EPA Method 3540. The sediment extracts were fractionated by adsorption chromatography, based on EPA Method 3630 and the gas chromatographymass spectrometry (GC-MS) analysis for polycyclic aromatic hydrocarbons and their homologues (38 compounds in total) followed the EPA Method 8270-C, with modifications.

Results and Discussion

PAH Distributions - Parental and Alkylated composition

The concentration of individual PAH compounds and the sum of 16 EPA priority PAHs (Σ 16 PAHs) and the total 38 PAH (Σ PAH) in the sediments collected in Guanabara Bay in 2000 (just after the oil spill) and in 2003 are shown in Tables 1 and 2. For both campaigns total PAH varied significantly along the bay, ranging from 559 to 58,439 ng/g dry weight (median concentration: 4,877 ng/g) for the 2000 campaign and 400 to 52,384 ng/g dry weight (median concentration: 3,603 ng/g) for 2003 campaign. For the 2000 campaign the highest concentrations of total PAH were recorded for the sediments collected in the intertidal stations T22, T24 and T32, located in the vicinity of the accident, followed by stations T39 and D53, which are located in the subtidal area.

The PAH distribution for the samples collected in both campaigns is shown in Fig. 3. Samples T7, T9 and T22 showed a predominance of alkylated compounds for the after spill campaign compared to 2003 study while the samples D39 and D53 showed a predominace of non-alkylayted compounds. The other samples have not shown significant difference in the 38 compounds distribution and concentration. On the other hand, it was

observed higher contribution of alkylated compounds in the 2003 campaign for the samples T31 and T32. Inspite of the slight difference in total PAH level from one measurement to the other, indicating a higher PAH concentration in 2000, it could be observed significant contributions of both petrogenic and pyrolitic inputs on the Guanabara Bay sediments in 2000 (Fig. 3 – sediments T7, T9, T22, D39 and 53).

Evaluating the Σ 16 PAH results of the samples studied, the range was 207 to 13,425 ng/g (median concentration: 1,264 ng/g) for the samples collected in 2000 and 184 to 3,653 ng/g (median concentration: 675 ng/g) for 2003 campaign. Figures 4 and 5 show a comparison of PAH distribution for the 16 EPA priority compounds and the total 38 compounds analysed for sediments from 2000 campaign. As expected, it can be observed the higher relative abundance of alkylated compounds for the samples near the accident of January 2000.

The comparison of this study data with data from other estuarine and coastal regions in the world reported in the literature is presented in Table 3. Despite the different numbers of PAH compounds analyzed in each study, the concentrations of PAHs in Guanabara Bay sediments by the time of the oil spill and 3 years after are not critical: they can be considered to be in the same range of various international estuarine sites. Comparing the data obtained in this study with the Rio de la Plata oil spill indicated lower PAH concentrations in Guanabara Bay (Colombo, 1989, 2000).

PAH Ratios – Sources Determinations

Some molecular ratios of PAHs have been developed in order to overcome the difficulty of identifying PAH sources in environmental samples (due to the complexity of the samples themselves and the weathering effects on the composition of the original source of the compounds) and help to investigate the source of these compounds, whether petrogenic, biogenic or pyrolytic (Gschwend and Hites, 1981, Sicre et al., 1987, Colombo et al., 1989, Budzinski et al., 1997, Baumard et al., 1998, Wang et al., 1999, Readman et al., 2002, Yunker et al., 2002).

The literature reports frequently the use of the double ratio plot of Phenantrene/Antracene versus Fluorantene/Pyrene for distinguishing a mixture of petrogenic and pyrolytic input for sediments (Baumard et al., 1998, Tam et el., 2001, Readman et al., 2002, Yunker et al., 2002, Ke et el., 2002). Figure 6 depicts this parental ratio diagram for Guanabara Bay samples collected in both campaigns, 2000 and 2003, plotted together with the spilled oil in January 2000 (MF 380 based on a Campos Basin crude oil), an Arabian oil (AR), frequently used in Brazilian refineries, and a Diesel oil (DM) produced in a refinery from the south of the country, based on another Brazilian basin oil. It can be seen that this ratio could not give a robust interpretation of PAH sources. Only some intertidal sediments (T1, T9, T15 and T18) showed clear pyrogenic characteristics. All other samples presented mixture features. This was expected since the PAH pair Phenantrene and Antracene has less difference in thermodynamic stability between isomers and the ratio are likely to be less effective to determine PAH sources (Yunker, 2000).

On the other hand, the Fluorantene/(Fluorantene+Pyrene) ratio (Yunker et al, 2000, Yunker et al, 2002) showed a high ability to distinguish combustion and petroleum inputs for Guanabara Bay samples. This can be seen in Fig. 7 and 8, in which the ratio was plotted against two other ratios (Indeno1,2,3-cdPyrene/Indeno1,2,3-cdPyrene+BenzoghiPerylene) and (Anthracene/Anthracene+Phenanthrenes), respectively), both with low efficiency to

determine PAH sources. It must be observed that this double ratio was also plotted together with the MF 380, Arabian oil and Diesel oil.

In addition to the Fluorantene/(Fluorantene+Pyrene) ratio, it was observed that the Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene) ratio (Yunker et al, 2000) has also exhibited high source discrimination capacity. This can be seen in Fig. 9, in which this ratio was plotted against to Anthracene/Anthracene+Phenanthrenes. So, based on these results it was plotted the double ratio Fluorantene/(Fluorantene+Pyrene) Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene), versus that showed the highest ability to distinguish pyrogenic and petrogenic sources in this study Samples with Fluorantene/(Fluorantene+Pyrene) less (Fig 10). than 0.4 and Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene) less than 0.5 suggests that petroleum is the dominant source. Those samples are T7, T22, T28, T31 and T32. It should be highlighted that the analysed oils (MF 380, Arabian Oil and Diesel Oil) were clearly allocated as petrogenic characteristics on the diagram.

The majority of other samples analysed showed pyrolytic characteristics, i.e., Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene) higher than 0.5 and Fluorantene/(Fluorantene+Pyrene) higher than 0.4. The samples with characteristics of Fluorantene/(Fluorantene+Pyrene) higher than 0.4 and Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene) less than 0.5 also suggested combustion inputs. The exception was for sediment from station T56 which PAH source could not be clearly identified, probably due a mixture of petrogenic and pyrolytic inputs.

Another compositional index used to differentiate the pyrogenic and petrogenic PAHs is the pyrogenic index reported by Wang *et al.* (1999), which is defined as the ratio of the other EPA priority 3-6-ring PAHs to the total of 5 target alkylated PAH homologues (Σ (other 3-6 ring PAHs)/ Σ (5 alkylated PAH series)). Based on more than 60 oils and petroleum products analyzed by Wang and collaborators, values up to 0.05 for the pyrogenic index unambiguously indicated the contribution of oil and refined products in the samples while values greater than 0.5 (ratio tenfold increased) indicated combustionderived sources for the samples. This ratio yield high acuracy and consistency once minimizes interferences from flutuation of concentration from one compound to another. For Guanabara Bay samples this ratio showed a good resolution, encompassing the majority of subtidal samples and T1 and T9 with pyrolytic characteristics and T22 and T32 clearly with petrogenic sources (Fig. 11). The ratio still showed a mixture feature for some samples, mainly for intertidal ones.

In addition to molecular PAH ratios as a tool for PAH sources, a PCA model was also used in this study (Statistica version 5.0). In order to prevent the influence of the wide range of sample concentrations, a normalisation to the total concentration of PAH was applied before PCA. Figures 12 and 13 depict the results for 2000 and 2003 campaigns, in which the majority of the samples were separated in groups. In the plot the distance and direction from the axis centre has the same meaning for both samples and PAH variables.

For both campaigns the first PC defines 2 variable groups by separating alkylated PAH form parent PAH: left and right sides, respectively. The second PC separates the PAH into 2 groups: predominantly projected by all alkyl Naphthalenes, alkyl Fluoranthenes and

C1Dibenzothiophenes on the upper side; and alkyl Dibenzothiophene and alkyl Phenanthrenes on the lower side.

The PCA model separated the sediment samples of Guanabara Bay and the oils analysed. For both campaigns, the oils projected on the upper left side of the y-axis with high contribution of low molecular weight compounds, which are presented in crudes but are usually weathered in the environment. Some samples (T7, T22, T24, T31, T32) projected on the lower left side of the y-axis, suggesting predominance of petrogenic input due to contribution of alkylated Phenanthrenes and Dibenzothiophenes. On the other hand, another samples projected on the right side of y-axis, encompassing a group of samples with pyrolitic characteristics showed by the dominance of high molecular weight compounds (T36, D43, T51, D53, T54, T55, T56, T57). So, upper left side of y-axis correlates to oils; lower left side correlates to samples with pyrolitic source predominance.

From one campaign to another, it was verified that only two samples (T1, T28) presented different contributions, suggesting that the class of predominant source of the samples has not significantly changed.

Conclusions

Parent and alkyl PAH (total of 38 compounds) have been quantified in 21 sediment samples from Guanabara Bay, Rio de Janeiro, Brazil, in two campaigns, the first was carried out immediately after the oil spill accident in January/2000 and the second, three years later. It was observed a slight difference in total PAH level from one measurement to another, indicating a higher PAH concentration of the samples in 2000 as a result of both petrogenic and pyrolitic contribution to the sediments. However normalised data by organic carbon or grain size should be done in order to confirm these conclusions. The hydrocarbon source determinations have been done by using PAH ratios for the samples studied. Some diognostic ratios exhibited high ability to distinguish combustion and petroleum inputs for Guanabara Bay sediments:

 Σ (other 3-6 ring PAHs)/ Σ (5 alkylated PAH series); Fluorantene/(Fluorantene+Pyrene); Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene). Additionally, the PCA results also exhibited promissing capacity of separating the samples into groups. Summarizing, the Guanabara Bay sediments could be separated into groups:

- samples with clear pattern of petrogenic input the majority localized near the vicinity of the accident on January/2000
- samples with combustion characteristics those from the majority of subtidal stations
- samples without clear contribution of petrogenic or pyrolytic input

Still more investigation appears to be necessary since Guanabara Bay is a complex urban area with the anthropogenic processes of introduction of PAH being from the extensive industrial and domestic waste discharges, indirect atmospheric deposition of incomplete fuel oil combustion, accidental oil spills and direct runoff.

References

Anderson, J.W., F. C. Newton, J. Hardin, R.H. Tukey and K.E. Richter (1996) Chemistry and Toxicity of Sediments from San Diego Bay, including a Biomarker (P450 RGS) Response. In <u>Environmental Toxicology and Risk Assessment</u>: Biomarkers and Risk <u>Assessment</u>, eds D.A. Bengtson and D.S. Henshel, Vol. 5, pp. 53–78. American Society for Testing and Materials, Philadelphia, USA.

Baumard, P, H. Budzinski, Q. Mchin, P. Garrigues, T. Burgeot, and J. Bellocq. (1998) Origin and Bioavailability of PAH in Mediterranean Sea from Mussel and Sediment Records, Estuarine, Coastal and Shelf Science, Vol. 47, pp. 77-90.

Budzinki, H., I. Jones, J. Bellocq, C. Piérard, P. Garrigues. (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary, Marine Chemistry, Vol. 48, pp. 85-97.

Colombo, J.C. (2000), Biogeochemical Assessment of the 1999 Rio de la Plata Oil Spill. Proceedings VII Latin American Congress on Organic Geochemistry, Foz do Iguaçu, Brazil.

Colombo, J.C., E. Pelletier, C. Brochu and M. Khalil, (1989) Determination of Hydrocarbon Sources using n-alkane and Polyaromatic Hydrocarbon Indexes. Case Study: Rio de La Plata Estuary, Argentina, Environment Science Technology, Vol. 23, pp. 888-894.

Elias, V.O., B.R.T. Simoneit, J.N. Cardoso, (2000) "Levoglucosan, a Molecular Fossil as Indicator of Biomass Burning Contribution in Sediments of the Amazon Shelf", Proceedings of the Seventh Latin-American Congress on Organic Geochemistry, Foz do Iguaçu, Paraná, Brazil, pp 243-244.

Feema (2003). <u>www.feema.rj.gov.br</u>. Accessed on 08/01/2003.

Gschwend, P.M. and R.A. Hites. (1981) Fluxes of Polycyclic Aromatic Hydrocarbons to Marine and Lacustrine Sediments in the Northeastern United States, Geochimica et Cosmochimica Acta 45, 2359–2367.

Hites, R.A. and W.G. Biemann. (1975) Identification of Specific Organic Compounds in a Highly Anoxid Sediment by CG/MS and HRMS, Adv. Chem. Ser., Vol. 147, 188-201.

Kayal, S.I. and D.W. Connell. (1989) Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons in Surface Sediments and Water from the Brisbane River Estuary, Australia, Estuarine Coastal and Shelf Science, Vol. 29, pp. 473-487.

Ke, L., T.W.Y. Wong, Y.S. Wong and N.F.Y. Tam. (2002) Fate of Polycyclic Aromatic Hydrocarbon (PAH) Contamination in a Mangrove Swamp in Hong Kong following an Oil Spill, Marine Pollution Bulletin, Vol. 45, pp. 339-347.

Kennicutt II, M.C., T.L. Wadw, B.J. Presley, A.G. Requejo, J.M. Brooks and G.J. Denoux. (1994) Sediment Contaminants in Casco Bay, Maine: Inventories, Source and Potential for Biological Impact, Environment Science Technology, Vol. 28, (1), pp. 1-15.

Kennicutt II, M.C. (editor) (1995) Gulf of Mexico Offshore Operations Monitoring Experiment, Final Report, U.S. Department of the Interior Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA, 700 p.

Khim, J.S., K. Kannan, D.L. Villeneuve, C.H. Koh and J.P. Giesy (1999) Characterization and Distribution of Trace Organic Contaminants in Sediment from Masan Bay, Korea. 1. Instrumental Analysis, Environmental Science and Technology, Vol. 33, pp. 4199–4205.

Lipatou, E. and J. Albaigés. (1994) Atmospheric Deposition of Hydrophobic Organic Chemicals in the Northwestern Mediterrean Sea: Comparison with the Rhone River Input, Marine Chemistry, Vol. 46, pp. 153-164.

Meniconi, M.F.G., I.T. Gabardo, M.E.R. Carneiro, S.M. Barbanti, G.C. Silva and C.G. Massone (2002), Brazilian Oil Spills Chemical Characterization – Case Studies, in Proceedings of the 25th Artic and Marine Oil Spill Program (AMOP), Calgary, Canada.

Meniconi, M.F.G, Scofield, A.L, Massone, C.G. (2003) Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Sediments of Guanabara Bay, Brazil. in Proceedings of the 26th Artic and Marine Oil Spill Program (AMOP), Victoria, Canada.

Pereira, W.E., F.D. Hostettler and J.B. Rapp. (1996) Distributions and Fate of Chlorinated Pesticides, Biomarkers and Polycyclic Aromatic Hydrocarbons in Sediments along a Contamination Gradient from a Point-source in San Francisco Bay, California, Marine Environmental Research, Vol. 41, 299–314.

Readman, J.W., M.R. Preston and R.F.C. Mantoura. (1986) An Integrated Technique to Quantify Sewage, Oil and PAH Pollution in Estuarine and Coastal Environments, Marine Pollution Bulletin, Vol. 17, pp. 298-308.

Readman, J.W., G. Fillman, I. Tolosa, J. Bartocci, J.P. Villeneuve, C. Catinni and L.D. Mee. (2002) Petroleum and PAH Contamination of the Black Sea, Marine Pollution Bulletin, Vol. 44, pp. 48-62.

Sherblom, P.M., D. Kelly and R.H. Pierce (1995) Baseline Survey of Pesticide and PAH Concentrations from Sarasota Bay, Florida, USA, Marine Pollution Bulletin Vol. 30, pp. 568–673.

Sicre, M.A., J.C. Marty, A. Saliot, X. Aparicio, J. Grimalt and J. Albaige. (1987) Aliphatic and Aromatic Hydrocarbons in Different Sized Aerosols over the Mediterranean Sea: Occurrence and Origin, Atmosphere Environment, Vol. 21, pp. 2247–2259.

Stout, S.A., V.S. Mager, R.M. Uhler, J. Ickes, J. Abbott and R. Brenner.(2001) Characterization of Naturally-occurring and Anthropogenic PAHs in Urban Sediments – Wycoff/Eagle Harbour Superfund Site, Environmental Forensics, Vol. 2, pp. 287-300.

Tam, N.F.Y., L. Ke, X.H. Wang and Y.S. Wong. (2001) Contamination of Polycyclic Aromatic Hydrocarbons in Surface Sediments of Mangroves Swamps, Environmental Pollution, Vol. 114, pp. 255-2631.

Wang, Z., M. Fingas and D.S. Page. (1999) Oil Spill Identification, Journal of Chromatography A, Vol. 843, pp.369-411.

Youngblood, W.W. and M. Blumer (1975) Polycyclic Aromatic Hydrocarbons in Gulf of Maine Sediments and Nova Scotia Soils, Geochimica. et Cosmochimica. Acta., Vol. 38, pp. 303-1314.

Yunker, M.B., R.W. Macdonald, R. Brewer, S. Sylvestre, T. Tuominen, M. Sekela, R.H. Mitchell, D.W. Paton, B.R. Fowler, C. Gray, D. Goyette and D. Sullivan. (2000) Assessment of Natural and Anthropogenic Hydrocarbon Inputs using PAHs as Tracers. The Fraser River Basin and Strait of Georgia 1987-1997, Report DOE FRAP, Environment Canada and Fisheries and Oceans Canada, Vancouver, BC, 128 p.

Yunker, M.B., R.W. Macdonald, R. Brewer, R. Vingarzan, R.H. Mitchell, D. Goyette, S. Sylvestre., (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, Vol. 33, pp 489-515.

Zhou, J.L. and K. Maskaoui (2003) Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China. Environmental Pollution, Vol. 121, pp. 269-281.

Figure 1. Points of municipal and industrial waste in Guanabara Bay

Figure 2. Geographic localization of the sediment sampling stations in Guanabara Bay

Figure 3. HPA Distribution in sediment samples from Guanabara Bay, campaigns 2000 and 2003

Figure 3. HPA Distribution in sediment samples from Guanabara Bay, campaigns 2000 and 2003 (cont.)

Figure 3. HPA Distribution in sediment samples from Guanabara Bay, campaigns 2000 and 2003 (cont.)

Figure 3. HPA Distribution in sediment samples from Guanabara Bay, campaigns 2000 and 2003 (cont.)

Figure 3. HPA Distribution in sediment samples from Guanabara Bay, campaigns 2000 and 2003 (cont.)

Figure 3. HPA Distribution in sediment samples from Guanabara Bay, campaigns 2000 and 2003 (cont.)

Figure 4. Total PAH Distribution in Guanabara Bay, campaign 2000

Figure 5. Σ 16 PAH Distribution in Guanabara Bay, campaign 2000

Figure 6. Plot of Phenantrene/Antracene versus Fluorantene/Pyrene

Figure 7. PAH cross plot of Anthracene/Anthracene+Phenanthrenes *versus* Fluorantene/(Fluorantene+Pyrene)

Figure 8. PAH cross plot of Indeno1,2,3-cdPyrene/Indeno1,2,3-cdPyrene+BenzoghiPerylene *versus* Fluorantene/(Fluorantene+Pyrene)

Figure 9. PAH cross plot for Anthracene/Anthracene+Phenanthrenes *versus* Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene)

Figure 10. PAH cross plot for Fluorantene/(Fluorantene+Pyrene) *versus* Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene)

Figure 11.Plot of the relative ratios Σ (other 3-6 ring PAHs)/ Σ (5 alkylated PAH series) over Phenanthrene/Anthracene for the sediment samples of Guanabara Bay and oils MF380, Arabian and Diesel

F1 (47,62%) Figure 12. PCA projections of PAH variables and sediment samples from campaign 2000

F1 (44,72%)

Figure 13. PCA Projections of PAH variables and sediment samples from campaign 2003

Compound	Dingo	Codo																					
Compound	Rings	Code	T1	T7	Т9	T15	T18	T22	T24	T28	T31	T32	T36	T46	T51	T54	T55	T56	T57	D34	D39	D43	D53
Naphthalene	2	Ν	6	2	2	12	7	5	12	4	20	55	16	5	16	3	<1	45	8	8	83	3	71
1-methylnaphthalene	2	1MN	3	19	6	24	6	45	6	2	10	39	9	8	10	<1	<1	28	2	6	21	<1	37
2-methylnaphthalene	2	2MN	6	26	7	48	15	67	21	9	35	84	33	27	25	4	5	89	8	6	67	<1	93
C ₂ Naphthalenes	2	C ₂ N	77	363	303	364	122	1695	211	226	234	629	294	166	294	9	100	315	16	328	218	189	166
C ₃ Naphthalenes	2	C₃N	3	983	944	440	163	6236	524	88	92	1458	55	148	56	7	56	163	10	55	132	24	91
C₄Naphthalenes	2	C₄N	19	1189	1377	338	172	6738	1214	97	84	1536	50	109	59	9	41	156	<1	56	120	11	76
Acenaphthylene	3	Acl	2	2	2	9	12	12	7	6	13	7	86	10	77	3	55	147	4	35	507	6	315
Acenaphtene	3	Ace	1	18	13	17	6	60	9	3	4	15	7	3	8	<1	7	28	3	5	29	<1	10
Fluorene	3	F	4	26	30	28	17	93	10	8	13	38	21	18	18	2	18	55	5	10	82	6	59
C ₁ Fluorenes	3	C₁F	5	160	199	74	55	601	80	24	47	192	31	60	10	2	23	87	6	17	88	11	66
C ₂ Fluorenes	3	C_2F	28	536	636	115	101	1602	682	57	73	618	43	90	114	4	33	255	8	41	128	28	118
C ₃ Fluorenes	3	C₃F	30	585	815	111	109	1748	1987	83	122	971	67	103	211	10	45	326	9	108	217	22	163
Dibenzothiophene	3	DBT	5	52	89	42	30	162	31	11	25	85	13	34	13	<1	16	31	3	10	24	6	53
C ₁ Dibenzothiophenes	3	C₁DBT	5	206	438	94	75	757	301	42	58	392	43	77	47	4	40	76	7	37	73	15	84
C ₂ Dibenzothiophenes	3	C ₂ DBT	22	441	963	170	145	1352	2160	100	127	1126	80	123	138	9	66	179	10	93	297	19	202
C ₃ Dibenzothiophenes	3	C₃DBT	31	425	884	152	135	1157	5109	111	334	1343	118	101	230	17	82	248	11	151	398	18	263
Phenanthrene	3	Fe	17	148	277	120	76	486	54	47	57	217	75	62	68	15	104	168	40	59	204	28	168
C ₁ Phenanthrenes	3	C₁Fe	21	490	888	187	141	1579	549	93	139	923	95	112	111	12	101	189	26	95	411	28	259
C ₂ Phenanthrenes	3	C ₂ Fe	30	781	1759	277	230	2294	5033	163	272	1815	134	136	248	15	112	286	23	175	846	35	480
C ₃ Phenanthrenes	3	C₃Fe	28	666	1479	231	204	1900	10485	148	474	1948	165	110	268	22	105	312	18	40	855	27	448
C ₄ Phenanthrenes	3	C₄Fe	1	321	538	120	110	839	6494	85	537	1068	60	50	192	18	65	276	11	191	341	12	196
Anthracene	3	An	4	26	46	20	21	122	38	23	59	65	56	25	39	5	51	111	15	38	251	9	157
Fluoranthene	4	FI	27	37	45	108	91	56	72	79	78	113	149	65	192	29	188	248	77	115	468	40	532
Pyrene	4	Pi	22	57	110	99	91	247	499	96	138	225	218	72	227	34	221	629	84	171	921	51	791
C ₁ Pyrenes	4	C₁Pi	2	106	222	112	118	547	2679	81	280	453	270	57	337	21	192	667	53	210	1772	33	1209
C ₂ Pyrenes	4	C ₂ Pi	1	161	311	108	99	868	5114	93	544	661	224	48	306	20	133	561	29	225	1505	25	879
Benz (a) anthracene	4	BaAn	14	35	55	65	59	151	854	69	126	126	198	57	170	23	199	281	65	102	1025	36	927
Chrysene	4	С	16	46	78	74	61	226	543	61	89	183	179	56	175	21	161	176	57	85	875	30	776
C ₁ Chrysenes	4	C₁C	15.1	94	215	101	90	777	5298	96	457	517	291	57	264	21	187	383	40	165	1452	25	1105
C ₂ Chrysenes	4	C ₂ C	9	95	234	124	99	1070	6695	107	764	673	241	42	191	18	119	231	21	179	690	14	620
Benz (b) fluoranthene	5	BbFl	25	37	52	88	89	88	76	117	133	107	278	76	286	44	323	528	55	184	2153	53	1246
Benz (k) fluoranthene	5	BkFl	11	13	14	28	20	23	157	37	33	101	114	38	129	17	109	198	23	70	838	20	478
Benz (a) pyrene	5	BePi	19	29	48	62	47	87	370	81	122	88	286	66	272	34	274	434	51	128	1161	38	1382
Benz (e) pyrene	5	BaPi	16	25	33	52	45	89	451	66	110	96	144	47	167	25	170	309	29	147	2151	31	561
Perylene	5	Pe	30	62	18	50	79	62	159	33	94	89	67	50	68	9	63	91	14	47	315	95	227
Indeno (1,2,3-cd)pyrene	6	IPi	17	22	27	60	58	72	79	71	127	73	298	77	228	36	256	464	51	148	1660	35	1120
Dibenz(a,h)anthracene	5	DBAn	6	8	12	26	16	57	188	23	110	43	119	38	70	10	77	144	21	43	551	8	485
Benzo(ghi)perylene	6	BPe	17	21	23	50	49	82	186	72	143	68	252	68	215	27	223	464	41	146	1628	21	883
Σ 16HPA			207	526	819	866	719	1866	3235	797	1264	1524	2352	735	2189	303	2267	4119	600	1366	13425	381	9399
Σ Total HPA			691	8259	13191	4198	3058	34048	58439	2614	6174	18240	4877	2487	5398	559	4019	9816	952	3730	24555	1048	16793

Table 1. Results for the Individual PAH (ng/g dry weight)* of Sediment Samples from Guanabara Bay – Campaign 2000

* Surrogate recuperation: 68 – 117 % (average = 98%)

number 1 1 1 1 1 1 1 1 5 6 6 1 6 7 1 2 4 1 5 0 0 1 0 1 <th>Compound</th> <th>Rings</th> <th rowspan="2">Code</th> <th></th>	Compound	Rings	Code																					
NaphNaphNaphNa				T1	T7	Т9	T15	T18	T22	T24	T28	T31	T32	T36	T46	T51	T54	T55	T56	T57	D34	D39	D43	D53
i-matry i-matry <t< td=""><td>Naphthalene</td><td>2</td><td>N</td><td>4</td><td>1</td><td>3</td><td>5</td><td>6</td><td>6</td><td>13</td><td>6</td><td>7</td><td>13</td><td>20</td><td>19</td><td>7</td><td>20</td><td>24</td><td>45</td><td>< 1</td><td>6</td><td>10</td><td>< 1</td><td>49</td></t<>	Naphthalene	2	N	4	1	3	5	6	6	13	6	7	13	20	19	7	20	24	45	< 1	6	10	< 1	49
2-nethymalmatchen 2 0.0 0.0 0.0 <	1-methylnaphthalene	2	1MN	2	< 1	2	8	3	4	5	20	6	40	22	10	11	11	8	17	1	5	13	nd	13
Chaptentainene 2 C,N 3 1	2-methylnaphthalene	2	2MN	3	1	4	7	5	11	16	10	18	70	3	28	7	22	27	60	2	12	< 1	nd	39
CNaphthalenes 2 C,M 17 12 13 13 24 85	C₂Naphthalenes	2	C ₂ N	32	5	18	64	35	55	100	133	121	1091	112	346	73	212	221	307	21	57	139	16	110
C.Napithylenes2C.Na777 <th>C₃Naphthalenes</th> <th>2</th> <th>C₃N</th> <th>12</th> <th>12</th> <th>20</th> <th>102</th> <th>42</th> <th>91</th> <th>113</th> <th>206</th> <th>236</th> <th>3657</th> <th>44</th> <th>133</th> <th>34</th> <th>56</th> <th>59</th> <th>118</th> <th>9</th> <th>71</th> <th>104</th> <th>20</th> <th>53</th>	C ₃ Naphthalenes	2	C₃N	12	12	20	102	42	91	113	206	236	3657	44	133	34	56	59	118	9	71	104	20	53
Acenaptivene 3 Ace 2 3 3 5 2 7 6 5 2 6 5 10 50 </th <th>C₄Naphthalenes</th> <th>2</th> <th>C₄N</th> <th>7</th> <th>32</th> <th>33</th> <th>120</th> <th>60</th> <th>143</th> <th>219</th> <th>319</th> <th>453</th> <th>4685</th> <th>33</th> <th>76</th> <th>29</th> <th>54</th> <th>34</th> <th>78</th> <th>10</th> <th>78</th> <th>142</th> <th>14</th> <th>41</th>	C₄Naphthalenes	2	C₄N	7	32	33	120	60	143	219	319	453	4685	33	76	29	54	34	78	10	78	142	14	41
Acanaptine 3 F. 6.1 2.1 <th2.1< th=""> <th2.1< <="" td=""><td>Acenaphthylene</td><td>3</td><td>Acl</td><td>2</td><td>2</td><td>3</td><td>4</td><td>5</td><td>7</td><td>7</td><td>< 2,5</td><td>5</td><td>2</td><td>73</td><td>6</td><td>5</td><td>36</td><td>57</td><td>186</td><td>9</td><td>23</td><td>6</td><td>6</td><td>120</td></th2.1<></th2.1<>	Acenaphthylene	3	Acl	2	2	3	4	5	7	7	< 2,5	5	2	73	6	5	36	57	186	9	23	6	6	120
Fluorene3F21443668807	Acenaphtene	3	Ace	<1	< 1	2	21	2	2	3	3	3	16	6	2	80	9	10	32	2	4	3	< 1	12
C,Fiolonene 3 C,Fi 4 8 8 9 2 8 5 6 60 60 7 1 0 0 <	Fluorene	3	F	2	1	4	13	6	8	8	9	10	70	15	14	13	18	18	47	5	10	8	5	29
C-Floorenee 3 C.F.F 5 2 2 2 2 2 2 5 3 5 6 6 5 7 3 6 7 7 1 7 1 <th1< th=""> 1 1 <</th1<>	C₁Fluorenes	3	C₁F	4	4	8	50	22	28	35	52	54	560	15	45	19	23	19	51	6	23	12	10	33
C-Floomens 3 CF 9 48 29 118 50 100	C ₂ Fluorenes	3	C ₂ F	5	23	20	81	46	75	212	184	256	2204	23	55	36	35	30	66	18	57	77	13	52
Diben 3 DBT 3 DBT 5 7 5 41 18 41 7 7 92 18 8 18 8 18 14 17 7 83 7 28 53 7 28 53 7 28 53 7 28 53 7 28 53 7 28 53 7 28 53 7 28 53 7 28 53 15 16 16 9 16 9 15 9 16 9 15 9 16 9 16 18 8 16 16 18 18 18 18 18 18 18 9 16 18 9 16 18 9 16 18 9 16 18 9 18 18 18 18 18 18 18 18 18 18 18 18 18 18 <	C ₃ Fluorenes	3	C ₃ F	9	48	29	118	59	136	1003	334	620	4116	44	54	62	77	36	120	25	98	113	16	87
C,Dibenzothiophenes 3 C,DB7 5 7 5 1 1 1 4 7 7 5 7 5 1 1 1 7 7 7 5 2 6 7 2 5 1 1 3 1	Dibenzothiophene	3	DBT	3	2	4	13	6	10	13	11	23	100	10	18	8	15	14	25	3	13	12	7	16
C,Dibenzothiophenes 3 C,DBT 7 26 97 18 98 97 88 98 91 98 91 98 91 98 91 98 91 98 91 98 91 98 16 98 16 98 16 38 97 100 99 164 38 52 98 16 16 99 164 38 52 98 16 99 164 38 52 64 170 18 98 154 39 164 18 191 96 60 103 99 164 38 53 53 53 181 90 60 60 103 34 181 11 24 25 76 18 90 64 163 54 25 64 17 35 36 30 93 181 49 18 48 18 41 24 25 35	C₁Dibenzothiophenes	3	C₁DBT	5	7	5	41	18	44	117	47	87	921	25	44	21	38	28	58	7	28	53	12	< 1
C,Diber.orthiophenes 3 C,DiF 7 66 37 77 75 403 75 270 82 55 165 155 99 140 49 147 154 15 224 Phenanthrene 3 C,Fe 12 17 28 47 30 40 62 300 10 90 154 49 47 54 10 C,Phenanthrene 3 C,Fe 11 60 58 194 75 249 175 249 175 249 180 3005 190 60 129 111 209 131 161 132 141 151 143 151 143 151 143 151 143 151 143 151 143 152 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 </td <td>C₂Dibenzothiophenes</td> <td>3</td> <td>C₂DBT</td> <td>7</td> <td>26</td> <td>29</td> <td>128</td> <td>50</td> <td>163</td> <td>801</td> <td>136</td> <td>447</td> <td>2087</td> <td>59</td> <td>71</td> <td>84</td> <td>94</td> <td>56</td> <td>116</td> <td>24</td> <td>88</td> <td>140</td> <td>18</td> <td>131</td>	C ₂ Dibenzothiophenes	3	C ₂ DBT	7	26	29	128	50	163	801	136	447	2087	59	71	84	94	56	116	24	88	140	18	131
Phenamthrene 3 Fe 12 7 25 42 21 27 30 40 62 300 70 48 51 103 99 154 39 53 52 24 102 C,Phenamthrenes 3 C ₂ Fe 11 60 58 19 70 85 85 85 97 109 100 101 20 116 164 164 109 43 20 133 20 135 164 10 <td>C₃Dibenzothiophenes</td> <td>3</td> <td>C₃DBT</td> <td>7</td> <td>56</td> <td>37</td> <td>173</td> <td>75</td> <td>403</td> <td>3350</td> <td>180</td> <td>872</td> <td>2170</td> <td>82</td> <td>55</td> <td>165</td> <td>155</td> <td>59</td> <td>140</td> <td>49</td> <td>147</td> <td>154</td> <td>15</td> <td>224</td>	C ₃ Dibenzothiophenes	3	C₃DBT	7	56	37	173	75	403	3350	180	872	2170	82	55	165	155	59	140	49	147	154	15	224
C,Phenanthrenes 3 C,Fe 12 17 28 84 36 79 205 121 65 85 83 97 109 100 111 32 88 104 26 119 C,Phenanthrenes 3 C,Fe 11 60 58 194 75 249 1723 318 189 3005 119 96 60 110 110 146 199 4 320 C,Phenanthrenes 3 C,Fe 3 72 56 150 17 31 62 90 48 491 250 44 245 57 52 49 56 55 50 30 93 147 42 105 43 42 455 69 126 39 147 42 155 24 175 31 49 242 128 168 155 435 411 44 436 410 40 40 <	Phenanthrene	3	Fe	12	7	25	42	21	27	30	40	62	300	70	49	51	103	99	154	39	53	52	24	102
C.Phenanthrenes 3 C.Fe 11 60 88 194 75 249 723 180 189 3005 119 96 60 129 111 209 51 146 199 4 233 C.Phenanthrenes 3 C.Fe 3 72 56 19 51 17 31 64 230 43 48 45 11 24 25 7 66 Fluoranthrene 4 Fl 23 48 67 52 68 52 69 146 19 42 18 24 18 48 145 11 24 25 33 33 147 148 </td <td>C₁Phenanthrenes</td> <td>3</td> <td>C₁Fe</td> <td>12</td> <td>17</td> <td>28</td> <td>84</td> <td>36</td> <td>79</td> <td>205</td> <td>121</td> <td>223</td> <td>1657</td> <td>85</td> <td>83</td> <td>97</td> <td>109</td> <td>100</td> <td>181</td> <td>32</td> <td>88</td> <td>104</td> <td>26</td> <td>119</td>	C₁Phenanthrenes	3	C₁Fe	12	17	28	84	36	79	205	121	223	1657	85	83	97	109	100	181	32	88	104	26	119
C ₂ Phenanthrenes 3 C ₄ Pe 8 20 84 246 848 6491 406 1216 210 71 270 186 96 197 35 187 185 32 295 C ₄ Phenanthrenes 3 C ₄ Fe 3 2 56 169 63 58 8491 257 964 2376 73 29 138 90 48 106 27 138 20 57 107 93 38 224 188 38 48 11 24 255 7 66 Fluoranthrene 4 Pi 23 68 57 52 49 46 58 177 153 165 178 24 88 217 151 31 94 95 155 167 152 48 150 153 150 155 150 152 150 152 150 155 151 150 155	C ₂ Phenanthrenes	3	C ₂ Fe	11	60	58	194	75	249	1723	318	189	3905	119	96	60	129	111	209	51	146	199	4	233
C ₄ Pe 3 C ₄ P 3 72 56 169 63 588 8491 27 73 29 138 90 48 106 27 138 121 <1 155 Anthracene 4 Fi 33 28 7 10 5 35 30 33 47 18 20 138 224 18 20 33 48 18 224 18 20 38 22 18 20 23 28 23 28 224 18 20 23 38 23 48 10 23 33 48 224 28 224 28 224 28 225 18 30 28 30 33 34 49 262 38 21 21 33 32 21 215 31 248 30 25 30 33 32 31 34 35 30 33 <	C ₃ Phenanthrenes	3	C₃Fe	8	20	84	245	88	569	6493	408	1216	2191	120	71	270	168	96	197	35	187	185	3	295
Anthracene 3 An 3 2 7 10 5 17 31 6 29 70 49 10 33 43 48 145 11 24 25 7 66 Fluoranthene 4 Pi 23 68 69 52 52 52 52 52 69 126 93 141 49 24 248 68 85 17 31 48 625 69 126 93 141 49 24 248 868 851 13 18 43 48 47 18 43 48 48 48 47 19 48 48 11 49 24 28 28 868 11 49 49 48 48 41 41 48 48 48 47 10 49 46 18 48 48 47 10 48 45 11 49 48 48 48 48 48 48 48 48 48 48 <	C₄Phenanthrenes	3	C₄Fe	3	72	56	169	63	588	8491	257	964	2376	73	29	138	90	48	106	27	138	121	< 1	155
Flu oranthene 4 Fl 23 28 65 95 56 55 50 93 147 42 185 224 178 280 57 107 93 38 222 Pyrene 4 CiPi 25 48 57 52 49 84 625 69 126 333 181 49 224 248 262 885 85 117 131 42 383 CiPyrenes 4 CiPi 7 71 43 72 49 486 625 476 155 241 155 226 286 186 155 435 61 149 166 166 Benz (a) anthracene 4 GC 13 19 226 211 35 646 75 467 55 467 55 467 55 411 190 150 198 315 60 69 42 351 Ciphysens 4 C _c 23 24 62 75 43 25	Anthracene	3	An	3	2	7	10	5	17	31	6	29	70	49	10	33	43	48	145	11	24	25	7	66
Pyrene 4 Pi 25 48 57 52 49 84 625 69 126 333 181 49 248 262 855 85 117 131 42 383 C _P Prenes 4 C _P Pi 7 71 43 72 49 446 626 921 211 35 329 217 259 75 80 125 118 24 606 C _P Prenes 4 C _P Pi 7 71 73 74 75 75 76 75 80 155 450 160 15	Fluoranthene	4	FI	23	28	65	99	58	52	56	35	30	93	147	42	185	224	178	280	57	107	93	38	222
C ₁ Pyrenes 4 C ₁ Pi 12 56 47 97 63 244 3146 119 268 921 211 35 329 217 259 755 80 125 118 24 609 C ₂ Pyrenes 4 C ₂ Pi 7 71 43 72 49 496 763 175 94 150 26 298 168 155 435 62 174 44 616 Benz (a) anthracene 4 BaAn 17 20 38 41 24 466 262 10 75 94 170 29 155 227 392 62 71 48 25 533 51 14 24 609 75 94 170 216 175 171 185 231 125 118 23 118 23 131 199 150 188 155 112 131 130 132 132 132 131 130 135 131 130 135 135 131<	Pyrene	4	Pi	25	48	57	52	49	84	625	69	126	393	181	49	224	248	262	885	85	117	131	42	383
C2Prenes 4 C2Pi 7 71 43 72 49 496 7638 173 547 152 165 26 298 168 155 435 62 157 149 16 516 Benz (a) anthracene 4 BaAn 17 20 38 41 24 48 622 10 75 94 170 29 219 155 227 392 62 71 86 28 351 Chrysene 4 C 13 19 32 42 30 55 467 35 435 455 457 153 124 18 125 13 126 132 149 165 125 31 190 155 137 149 165 155 131 126 127 132 126 132	C ₁ Pyrenes	4	C₁Pi	12	56	47	97	63	244	3146	119	268	921	211	35	329	217	259	755	80	125	118	24	609
Benz (a) anthracene 4 BaAn 17 20 38 41 24 48 622 10 75 94 170 29 219 155 227 392 62 71 86 28 351 Chrysene 4 C 13 19 32 42 30 55 467 35 73 190 151 31 199 150 198 315 60 69 82 28 351 C ₁ Chrysenes 4 C ₁ C 12 33 60 43 488 871 61 430 435 225 31 246 175 216 50 51 12 138 25 533 C ₂ Chrysenes 4 C ₂ C 5 51 34 488 871 61 40 305 55 411 20 15 94 15 15 95 15 15 16 33 13 13 13 23 14 81 10 35 15 16 33	C ₂ Pyrenes	4	C ₂ Pi	7	71	43	72	49	496	7638	173	547	1529	165	26	298	168	155	435	62	157	149	16	516
Chrysene4C13193242305546735731901513119915019831560698228316C1Chrysenes4C2C122830543925853461130435225312461752165065311213825533C2Chrysenes4C2C551346043488871161486757153251591321342562915917517176175316Benz (b) fluoranthene5BbFI23224678488227921694630555411200311825841268655373Benz (b) fluoranthene5BbFI108152113204157159118231448111033529463619136Benz (b) fluoranthene5BePi1914173724817771749362844420717817848494936374135204636173384669913738355Benz (b) pyrene5BaPi151833381866 <th< td=""><td>Benz (a) anthracene</td><td>4</td><td>BaAn</td><td>17</td><td>20</td><td>38</td><td>41</td><td>24</td><td>48</td><td>622</td><td>10</td><td>75</td><td>94</td><td>170</td><td>29</td><td>219</td><td>155</td><td>227</td><td>392</td><td>62</td><td>71</td><td>86</td><td>28</td><td>351</td></th<>	Benz (a) anthracene	4	BaAn	17	20	38	41	24	48	622	10	75	94	170	29	219	155	227	392	62	71	86	28	351
C1Chrysenes 4 C1C 12 28 30 54 39 258 539 61 130 435 225 31 246 175 216 506 53 112 138 25 533 C2Chrysenes 4 C2C 5 51 34 60 43 488 8711 61 486 757 153 25 159 132 134 256 29 159 175 17 17 316 Benz (b) fluoranthene 5 BbFI 23 22 46 78 48 82 279 21 69 46 305 55 411 200 311 825 84 126 86 55 373 Benz (b) fluoranthene 5 BkFI 10 8 15 21 13 20 41 5 15 9 118 23 144 81 110 335 29 46 36 15 17 17 49 36 284 44 267 178	Chrysene	4	С	13	19	32	42	30	55	467	35	73	190	151	31	199	150	198	315	60	69	82	28	316
C2Chrysenes 4 C2C 5 51 34 60 43 488 8711 61 486 757 153 25 159 132 134 256 29 159 175 17 316 Benz (b) fluoranthene 5 BbFI 23 22 46 78 48 82 279 21 69 46 305 55 411 200 311 825 84 126 86 55 373 Benz (b) fluoranthene 5 BkFI 10 8 15 21 13 20 41 5 15 9 118 23 144 81 110 335 29 46 36 19 136 Benz (a) pyrene 5 BePi 19 14 17 37 24 81 777 17 49 36 284 44 267 175 178 378 38 355 Benz (a) pyrene 5 BaPi 15 18 33 38 18 65 <	C ₁ Chrysenes	4	C₁C	12	28	30	54	39	258	5349	61	130	435	225	31	246	175	216	506	53	112	138	25	533
Benz (b) fluoranthene 5 BbFl 23 22 46 78 48 82 279 21 69 46 305 55 411 200 311 825 84 126 86 55 373 Benz (k) fluoranthene 5 BkFl 10 8 15 21 13 20 41 5 15 9 118 23 144 81 110 335 29 46 36 19 136 Benz (a) pyrene 5 BePi 19 14 17 37 24 81 777 17 49 36 284 44 267 178 270 686 69 91 73 38 355 Benz (e) pyrene 5 BaPi 15 18 33 38 18 65 684 10 66 47 169 36 374 135 168 484 52 88 59 29 257 Perylene 5 Pe 32 24 13 41 <td>C₂Chrysenes</td> <td>4</td> <td>C₂C</td> <td>5</td> <td>51</td> <td>34</td> <td>60</td> <td>43</td> <td>488</td> <td>8711</td> <td>61</td> <td>486</td> <td>757</td> <td>153</td> <td>25</td> <td>159</td> <td>132</td> <td>134</td> <td>256</td> <td>29</td> <td>159</td> <td>175</td> <td>17</td> <td>316</td>	C ₂ Chrysenes	4	C ₂ C	5	51	34	60	43	488	8711	61	486	757	153	25	159	132	134	256	29	159	175	17	316
Benz (k) fluoranthene 5 BkFi 10 8 15 21 13 20 41 5 15 9 118 23 144 81 110 335 29 46 36 19 136 Benz (a) pyrene 5 BePi 19 14 17 37 24 81 777 17 49 36 284 44 267 178 270 686 69 91 73 38 355 Benz (e) pyrene 5 BaPi 15 18 33 38 18 65 684 10 66 47 169 36 374 135 168 484 52 88 59 29 257 Perylene 5 Pe 32 24 13 41 51 72 215 167 53 58 60 46 66 41 61 139 16 37 25 65 75 Indeno (1,2,3-cd)pyrene 6 IPi 16 27 45 30	Benz (b) fluoranthene	5	BbFl	23	22	46	78	48	82	279	21	69	46	305	55	411	200	311	825	84	126	86	55	373
Benz (a) pyrene 5 BePi 19 14 17 37 24 81 777 17 49 36 284 44 267 178 270 686 69 91 73 38 355 Benz (e) pyrene 5 BaPi 15 18 33 38 18 65 684 10 66 47 169 36 374 135 168 484 52 88 59 29 257 Perylene 5 Pe 32 24 13 41 51 72 215 167 53 58 60 46 66 41 61 139 16 37 25 65 75 Indeno (1,2,3-cd)pyrene 6 IPi 16 27 45 30 68 116 8 43 48 205 34 310 184 177 455 55 128 60 40 331 Dibenz(a,h)anthracene 5 DBAn 4 5 26 71 372 <th>Benz (k) fluoranthene</th> <th>5</th> <th>BkFl</th> <th>10</th> <th>8</th> <th>15</th> <th>21</th> <th>13</th> <th>20</th> <th>41</th> <th>5</th> <th>15</th> <th>9</th> <th>118</th> <th>23</th> <th>144</th> <th>81</th> <th>110</th> <th>335</th> <th>29</th> <th>46</th> <th>36</th> <th>19</th> <th>136</th>	Benz (k) fluoranthene	5	BkFl	10	8	15	21	13	20	41	5	15	9	118	23	144	81	110	335	29	46	36	19	136
Benz (e) pyrene 5 BaPi 15 18 33 38 18 65 684 10 66 47 169 36 374 135 168 484 52 88 59 29 257 Perylene 5 Pe 32 24 13 41 51 72 215 167 53 58 60 46 66 41 61 139 16 37 25 65 75 Indeno (1,2,3-cd)pyrene 6 IPi 16 27 45 30 68 116 8 43 48 205 34 310 184 177 455 55 128 60 40 331 33 33 33 34 35 301 <2,5	Benz (a) pyrene	5	BePi	19	14	17	37	24	81	777	17	49	36	284	44	267	178	270	686	69	91	73	38	355
Perylene 5 Pe 32 24 13 41 51 72 215 167 53 58 60 46 66 41 61 139 16 37 25 65 75 Indeno (1,2,3-cd)pyrene 6 IPi 16 16 27 45 30 68 116 8 43 48 205 34 310 184 177 455 55 128 60 40 334 Dibenz(a,h)anthracene 5 DBAn 4 5 8 14 8 35 301 <2,5 19 nd 60 11 76 56 58 144 16 39 24 13 127 Benzo(ghi)perylene 6 BPe 15 26 37 26 71 372 11 44 58 153 32 281 169 147 386 48 117 57 36 301 216HPA 184 212 388 560 349 647 3653	Benz (e) pyrene	5	BaPi	15	18	33	38	18	65	684	10	66	47	169	36	374	135	168	484	52	88	59	29	257
Indeno (1,2,3-cd)pyrene 6 IPi 16 16 27 45 30 68 116 8 43 48 205 34 310 184 177 455 55 128 60 40 334 Dibenz(a,h)anthracene 5 DBAn 4 5 8 14 8 35 301 <2,5 19 nd 60 11 76 56 58 144 16 39 24 13 127 Benzo(ghi)perylene 6 BPe 15 15 26 37 26 71 372 11 44 58 153 32 281 169 144 16 39 24 13 127 Benzo(ghi)perylene 6 BPe 15 26 37 26 71 372 11 44 58 153 32 281 169 147 386 48 117 57 36 301 2 16HPA 184 212 388 560 349 647 3653	Perylene	5	Pe	32	24	13	41	51	72	215	167	53	58	60	46	66	41	61	139	16	37	25	65	75
Dibenz(a,h)anthracene 5 DBAn 4 5 8 14 8 35 301 < 2,5 19 nd 60 11 76 56 58 144 16 39 24 13 127 Benzo(ghi)perylene 6 BPe 15 15 26 37 26 71 372 11 44 58 153 32 281 169 147 386 48 117 57 36 301 2 16HPA 184 212 388 560 349 647 3653 269 675 1448 1891 443 2611 1829 2090 5110 614 1028 818 368 317 2 Total HPA 400 838 1004 2516 1303 4931 52384 3603 7993 37014 3856 1861 5090 4028 4130 974 1242 2944 3063 726 7182	Indeno (1,2,3-cd)pyrene	6	IPi	16	16	27	45	30	68	116	8	43	48	205	34	310	184	177	455	55	128	60	40	334
Benzo(ghi)perylene 6 BPe 15 15 26 37 26 71 372 11 44 58 153 32 281 169 147 386 48 117 57 36 301 Σ 16HPA 184 212 388 560 349 647 3653 269 675 1448 1891 443 2611 1829 2090 5110 614 1028 818 368 3177 Σ Total HPA 400 838 1004 2516 1303 4931 52384 3603 7993 37014 3856 1861 5090 4028 4130 9734 1242 2944 3063 726 7182 <td>Dibenz(a,h)anthracene</td> <td>5</td> <td>DBAn</td> <td>4</td> <td>5</td> <td>8</td> <td>14</td> <td>8</td> <td>35</td> <td>301</td> <td>< 2,5</td> <td>19</td> <td>nd</td> <td>60</td> <td>11</td> <td>76</td> <td>56</td> <td>58</td> <td>144</td> <td>16</td> <td>39</td> <td>24</td> <td>13</td> <td>127</td>	Dibenz(a,h)anthracene	5	DBAn	4	5	8	14	8	35	301	< 2,5	19	nd	60	11	76	56	58	144	16	39	24	13	127
Σ 16HPA 184 212 388 560 349 647 3653 269 675 1448 1891 443 2611 1829 2090 5110 614 1028 818 368 3177 Σ Total HPA 400 838 1004 2516 1303 4931 52384 3603 7993 37014 3856 1861 5090 4028 4130 9734 1242 2944 3063 726 7182	Benzo(ghi)perylene	6	BPe	15	15	26	37	26	71	372	11	44	58	153	32	281	169	147	386	48	117	57	36	301
Σ Total HPA 400 838 1004 2516 1303 4931 52384 3603 7993 37014 3856 1861 5090 4028 4130 9734 1242 2944 3063 726 7182	Σ 16ΗΡΑ			184	212	388	560	349	647	3653	269	675	1448	1891	443	2611	1829	2090	5110	614	1028	818	368	3177
	Σ Total HPA			400	838	1004	2516	1303	4931	52384	3603	7993	37014	3856	1861	5090	4028	4130	9734	1242	2944	3063	726	7182

Table 2. Results for the Individual PAH (ng/g dry weight)* of Sediment Samples from Guanabara Bay – Campaign 2003

* Surrogate recuperation: 61 – 119 % (average = 101%)

Location	Number of PAH analyzed	Concentration Range (ng/g)	References						
Casco Bay, USA	23	16-20,748	Kennicutt et al., 1994						
San Diego, USA	36	80-20,000	Anderson et al., 1996						
San Francisco Bay, USA	17	2,653-27,680	Pereira et al, 1996						
Masan Bay, Korea	16	41-1,100	Khim et al., 1999						
Gironde & Arcachon Bay, France	14	3.5-853	Sicre et al., 1987						
Sarasota Bay, USA	11	17-26,771	Sherblom et al., 1995						
Brisbane River Estuary, Australia	17	2,840-13,470	Kayal & Connell, 1989						
Mersey Estuary, UK	13	5,310	Readman et al., 1986						
Tamar Estuary, UK	13	8,630	Readman et al., 1986						
Rio de La Plata Estuary, Argentina	18	50-555,000	Colombo et al., 1989						
Daya Bay, Hong Kong, China	16	115-1,134	Zhou & Maskaoui, 2003						
Channel of Rio de La Plata (after oil spill), Argentina	16	10 - 70,000	Colombo, 2000						
Guanabara Bay (campaign 2000)	16	207-13,425							
	38	559-58,439	This study						
Guanabara Bay (campaign 2003)	16	184-3,653							
Brazil	38	400-52,384							

Table 3. Summary of PAH Concentration (ng/g dry weight) in Sediments from Various Coastal Sites in the World