PROBABILITY AND OIL SPILL TRAJECTORY ASSESSMENTS IN ASSET LIFE EXTENSION PROJECTS:

SESSION 10: SHIPPING RISK 2

Matt Horn, Ph.D.
Director | RPS North America
22 June 2022

Contact: Matt.Horn@rpsgroup.com

+1 401-661-8606

Outline

- Framing the Problem
- Probability Assessment
- Consequence Assessment
- Informing EIA, EIS, **NEBA/SIMA**, and OSRP

Setting the Stage

Energy Transition

- Climate and CO₂ focus
- Transition to renewables
- Decreasing oil production
- But it takes time... decades?

Aging Offshore Infrastructure

- Many companies moving towards decommissioning
- Some investing in Asset Life Extension

An aging oil drilling rig in the North Sea.

Photo Credit: Erik Christenser

Examples

- North Sea: Equinor Statfjord Area & Troll East and West
- Newfoundland: Suncor Terra Nova & Husky White Rose

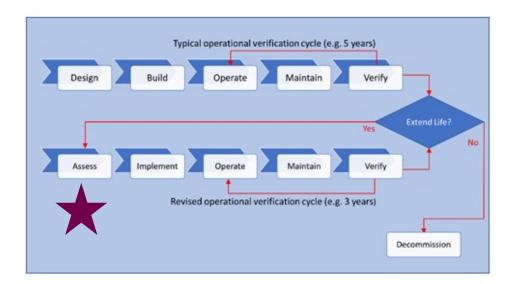
Setting the Stage

- Complex Global market
 - Increasing energy demand
 - Covid-19
 - Ukraine Crisis
 - Uncertainty
 - Many, many more

Photo Credit: Getty

Brent Crude Oil USD/Bbl over the last 10 years

Photo Credit: Trading Economics.com

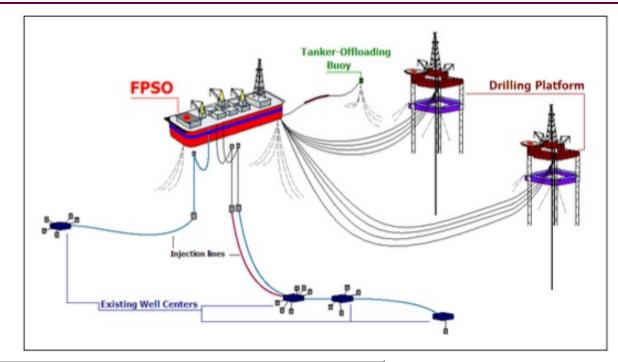

Framing the Problem

- Operator Assessment of Obsolescence
 - Life Expectancy
 - Cost of infrastructure
 - New vs. Existing
 - Regulatory Environment (and uncertainty)
- Assessment of Risk: Oil Spills
 - Likelihood, type, and volume of a releases
 - Environmental impact from releases

Dr. Dagmar Schmidt Etkin

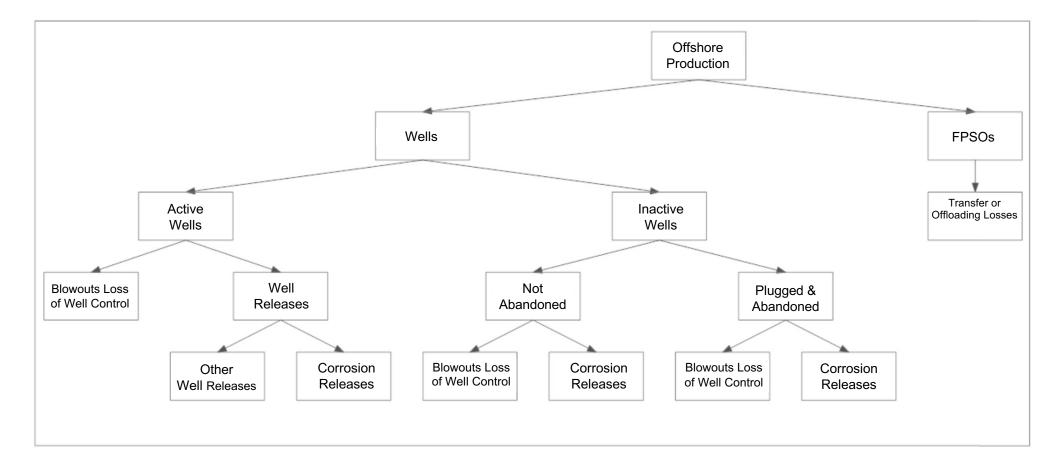
ENVIRONMENTAL RESEARCH CONSULTING

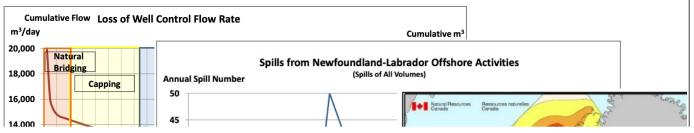
		Impact								
		Negligible	Minor	Moderate	Significant	Severe				
	Very Likely	Low Med	Medium	Med Hi	High	High				
	Likely	Low	Low Med	Medium	Med Hi	High				
	Possible	Low	Low Med	Medium	Med Hi	Med Hi				
ı	Unlikely	Low	Low Med	Low Med	Medium	Med Hi				
	Very Unlikely	Low	Low	Low Med	Medium	Medium				

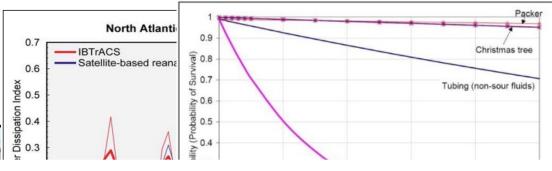

- Types of Releases
 - Blowout:

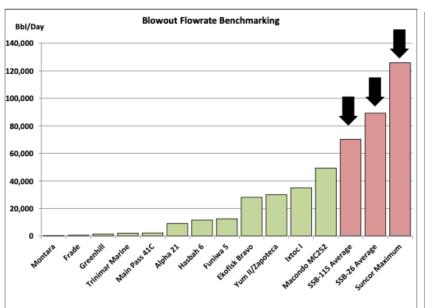
Loss of well control

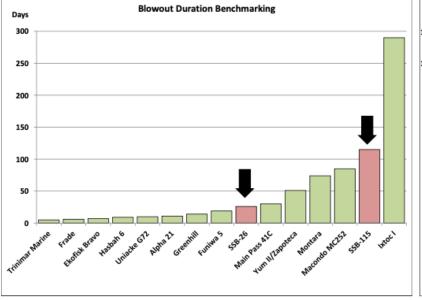
Well Release:

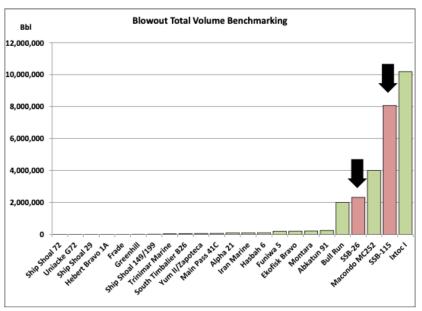

Drill pipe, tubing, flow lines


Corrosion-related discharge: episodic or chronic




Scenario ID	Spill Event	Spill Rate	Release Duration	Total Volume
SSB-26	Subsurface blowout	Declining from 20,000 m ³ /day to	26 days	368,776 m ³
33B-20	Subsurface blowout	12,935 m ³ /day as per Figure 1	20 days	2,319,532 bbl
SSB-115	Subsurface blowout	Declining from 20,000 m ³ /day to	115 dava	1,283,040 m ³
35B-115	Subsurface blowout	8,210 m ³ /day as per Figure 1	115 days	1,283,040 m ³ 8,070,078 bb1 55 m ³
DG 55	Batch spill:	55 m³ instantaneous release	I	55 m ³
BS-55	Loss from offloading hose (valve to valve)	55 m instantaneous release	Instantaneous	346 bb1
20.440	Batch spill:	3.		120 m ³
BS-120	Loss from production riser (FPSO)	120 m ³ instantaneous release	Instantaneous	755 bbl


Basic Types of Spills Assessed



Benchmarking release rates, duration, and total volume to real world releases

Corrosion Analysis

Ocean Science Division

CPS

Likelihood Outputs

- Blowout probability with and without new wells
- Mean frequency of well releases
- Probability of:
 - well blowout by volume category
 - well releases by volume category
 - corrosion leading to spillage
 - batch spillage
- Summary of expected volume by percentile
- Probable return periods

				ility of Blo	wout (Expect	ed Frequ							
	With		r of Wells re Well C0	08WS	Blowout	Wi	Number th Future	r of Wells		Blowout			
Year		Wells	Wells V Gas-	Vithout	Probability in Specified		l Wells	Wells	Without -Lift ⁸	Probability in Specified			
	Active	Inactive	Active	Inactive	Year	Active	Inactive	Active	Inactive	Year			
2019	17	0	14	0	0.00235	18	0	15	0	0.00252			
2020	īV	0	14	0	0.00235	18	0	15	0	0.00252			
2021	17	0	14	0	0.00235	18	0	15	0	0.00252			
2022	17	0	14	0	0.00235	18	0	15	0	0.00252			
023	17	0	14	0	0.00235	18	0	15	0	0.00252			
024	17	0	14	0	0.00235	18	0	15	0	0.00252			
025	17	0	14	0	0.00235	18	0	15	0	0.00252			
2026	17		14	0	0.00235	18	0	15	0	0.00252			
027	16	1	13	1	0.00219	17	1	14	1	0.00236			
2028	16	1	13	1	0.00219	17	1	14	1	0.00236			
2029	16	1	13	1	0.00219	17	1	14	1	0.00236			
2030	16	1 、	13	1	0.00219	17	1	14	1	0.00236			
2031	14	3	11	3	0.00186	15	3	12	3	0.00203			
2032	14	3_	Toble 1	4. Drob	abilities a	nd Do	turn Do	riodo	1 . 1				
2033	0	17	Table I	4. Proc	apilities a	na ke	turn Pe	rious			-		1.1114
2034	0	17				To	tal Volu	me		Probability ith 17 Wells)			bability 18 Wells
035	0	17	Modeled	Sni	ill Event				(**	TNAI		(**1111	TNA
036	36 0 17		17 Scenario) Sp.	III ISVOIIC	m ³		bbl	Per Yea			Per Year	Produ
037	0	17								Lifetin			Lifet
fter ⁹	0	17		Subsu	rface					0.0	00121		0.0
			SSB-26	blowe		368,7	76 2,	319,532	0.000009			0.0000091	110,00

1,283,040

55

120

8,070,078 | 0.000004

0.13

0.000022

346

755

Subsurface

Batch spill:

Loss from

Batch spill:

offloading hose

Loss from FPSO

production riser

blowout

SSB-115

BS-55

BS-120

0.000024

0.0000046

0.13

0.000061

7.7 years

0.00031

45,000 years

1.8

250,000 years

TNALE

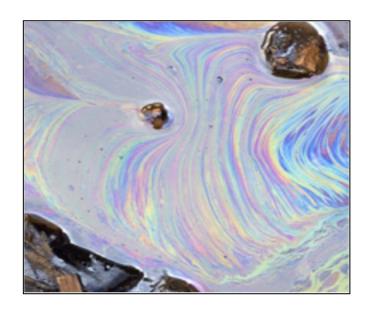
Production Lifetime 0.000128

110,000 years

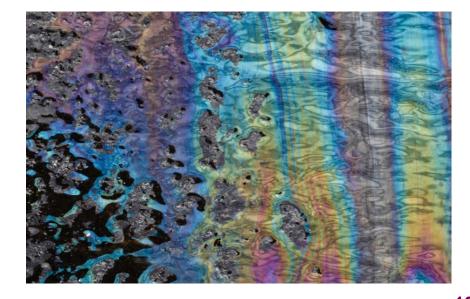
250,000 years

0.0000642

1.8

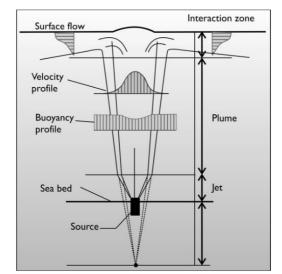

7.7 years

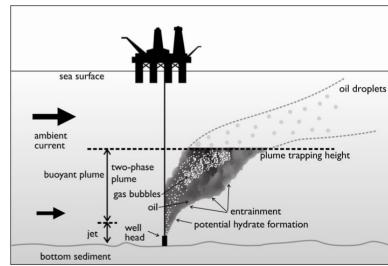
0.00033

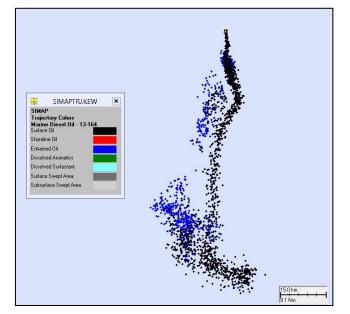

45,000 years

Modeling Environmental Consequences Following a Release of Oil

- Questions Addressed:
 - Trajectory Where will released oil move in the environment?
 - Fate How will oil behave and weather in the environment?
 - Effects What biological / socio-economic resources may be affected?


Modeling Approach

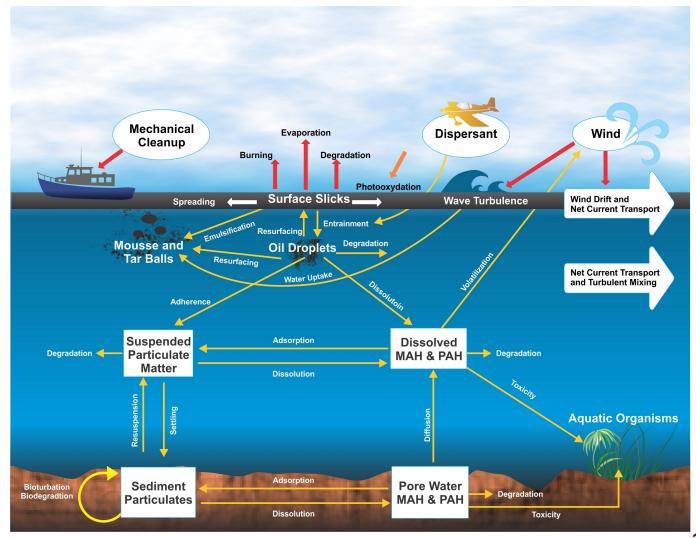

OILMAPDeep


- Near-field Analysis
 - Used to characterize the plume dynamics and droplet size distribution of spilled oil in the region immediately surrounding the modelled blowout.

SIMAP

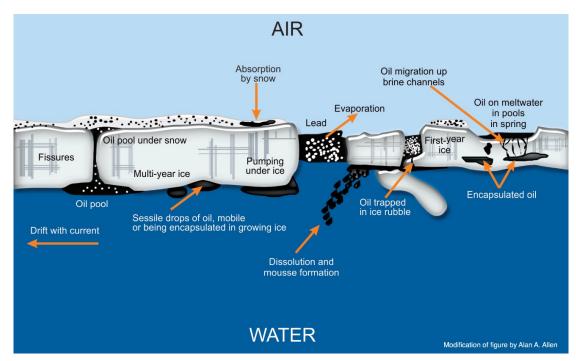
- Far-field Analysis
 - Used to characterizes the trajectory (movement) and fate (behavior) of spilled oil in 3D to determine the potential effects of a spill. Oil is treated as many individual parcels called Lagrangian Elements (LE).

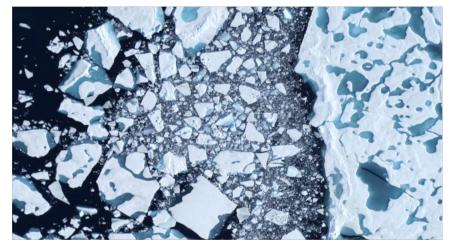
Each point is an individual LE moving on its own. The trajectory and fate, including the chemical and physical parameters of each particle, are tracked individually for each LE throughout the model domain over time.



Simulating Oil in the Environment

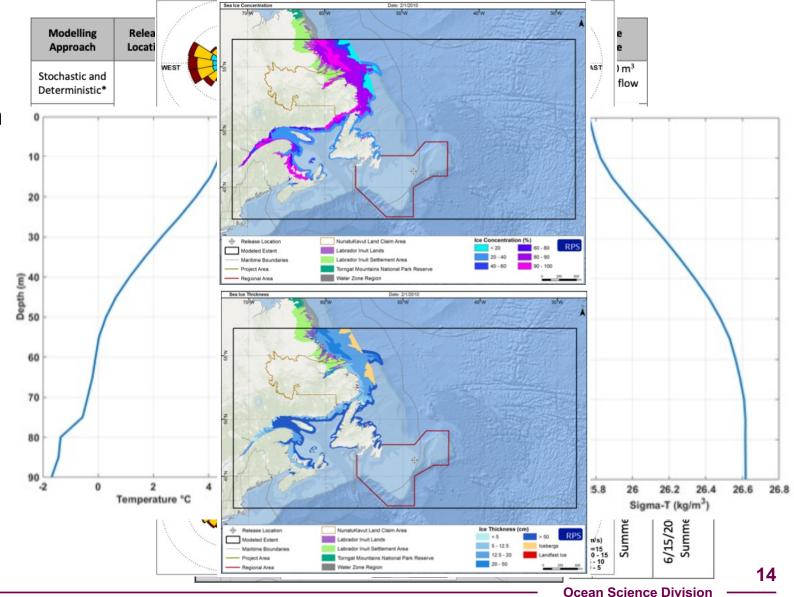
SIMAP


- Transport
- Oil spreading
- Evaporation
- Dissolution
- Entrainment
- Emulsification
- Degradation
- Horizontal and Vertical Dispersion
- Volatilization from the water column
- Adherence of droplets to suspended sediments
- Sedimentation
- Emergency Response



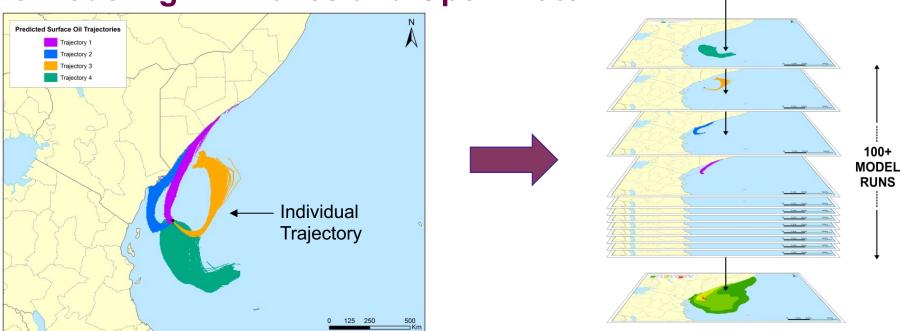
Oil Fate Processes in Ice

- Advection oil moves with ice at high coverage, modified at intermediate coverage, no effect at low ice coverage
- Evaporation reduced rate due to shielding from wind, reduced wave energy
- Entrainment reduced due to reduced wave energy
- Spreading slowed by cold, presence of ice, herding effects


Relatively Ice Free (0-30%)

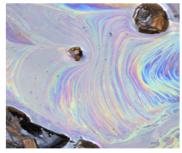
Partial Ice Cover (30-80%)

Complete Ice Cover (80-100%)


SIMAP Model Inputs

- Release Location
- Date, Time, and Model Duration
- Fuel/oil type and characteristics
- Amount released and release duration
- Geographic data
 - Shoreline data
 - Habitat data
 - Depth
- Environmental Conditions
 - Winds & Currents
 - Temperature & Salinity
 - Ice

Stochastic Modeling – in Lakes and Open Water



- Multiple 3D deterministic model trajectories (>100) are run for one release scenario to characterize the consequences of spills under various environmental conditions (i.e., variable currents, winds, ice, etc.)
- Long term wind and currents records (5-10 years)
- Randomly selected start dates
- Statistical analysis of all trajectories generates maps of overall oiling probability and minimum travel time
- Areas and volumes affected over prescribed minimum cut-off values or thresholds are then evaluated
- Individual representative trajectories are identified and examined in more detail (e.g., 95th percentile "worst cases")
- Results may be separated and analyzed based upon specific timeframes (e.g., months, seasons, ice cover, etc.)



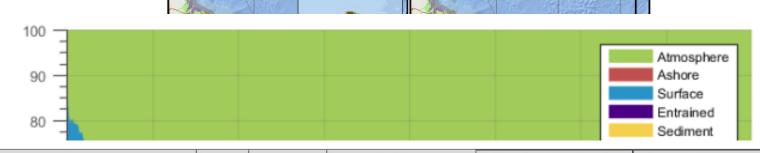
Thresholds of Concern

Threshold	Cutoff Threshold	Rationale/Comments	Visual Appearance	References	
Туре	_	(Socio-economic, Response, Ecological) Socio-economic: A conservative threshold used in several risk			
Oil Floating on Water Surface	* 0.04 g/m²	assessments to determine effects on socioeconomic resources (e.g. fishing may be prohibited when sheens are visible on the sea surface). Socio-economic resources and uses that would be affected by floating oil include commercial, recreational and subsistence fishing; aquaculture; recreational boating, port concerns such as shipping, recreation, transportation, and military uses; energy production (e.g., power plant intakes, wind farms, offshore oil and gas); water supply intakes; and aesthetics.	Fresh oil at this minimum thickness corresponds to a slick being barely visible or scattered sheen (colorless or silvery/grey), scattered tarballs, or widely scattered patches of thicker oil.	French McCay et al., 2011; French McCay et al., 2012; French McCay, 2016; Lewis, 2007, Bonn Agreement	
	10 g/m²	Ecological: Mortality of birds on water has been observed at and above this threshold. Sublethal effects on marine mammals, sea turtles, and floating Sargassum communities are of concern.	Fresh oil at this thickness corresponds to a slick being a dark brown or metallic sheen.	French et al., 1996; French McCay, 2009 (based on review of Engelhardt, 1983, Clark, 1984, Geraci and St. Aubin 1988, and Jenssen 1994 on oil effects on aquatic birds and marine mammals); French McCay et al., 2011; French McCay et al., 2012; French McCay, 2016	
Shoreline Oil	1.0 g/m ²	Socio-economic/Response: A conservative threshold used in several risk assessments. This is a threshold for potential effects on socio-economic resource uses, as this amount of oil may trigger the need for shoreline cleanup on amenity beaches, and affect shoreline recreation and tourism. Socio-economic resources and uses that would be affected by shoreline oil include recreational beach and shore use, wildlife viewing, nearshore recreational boating, tribal lands and subsistence uses, public parks and protected areas, tourism, coastal dependent businesses, and aesthetics.	May appear as a coat, patches or scattered tar balls, stain	French-McCay et al., 2011; French McCay et al., 2012; French McCay, 2016	
	100 g/m²	Ecological: This is a screening threshold for potential ecological effects on shoreline flora and fauna, based upon a synthesis of the literature showing that shoreline life has been affected by this degree of oiling. Sublethal effects on epifaunal intertidal invertebrates on hard substrates and on sediments have been observed where oiling exceeds this threshold. Assumed lethal effects threshold for birds on the shoreline.	May appear as black opaque oil.	French et al., 1996; French McCay, 2009; French McCay et al., 2011; French McCay et al., 2012; French McCay, 2016	
	1.0 ppb (μg/L) of dissolved PAHs;				
In Water Concentration	corresponds to ~100 ppb (µg/L) of whole oil (THC) in the water column (soluble PAHs are approximately 1% of the total mass of fresh oil)	Water column effects for both ecological and socioeconomic (e.g., seafood) resources may occur at concentrations exceeding 1 ppb dissolved PAH or 100 ppb whole oil; this threshold is typically used as a screening threshold for potential effects on sensitive organisms.	N/A	Trudel et al. 1989; French-McCay 2004; French McCay 2002; French McCay et al. 2012	

^{*}Thresholds used in supporting stochastic results figures. For comparison, a bacterium is 1-10 μm in size, a strand of spider web silk is 3-8 μm, and paper is 70-80 μm thick. Oil averaging 1 g/m² is roughly equivalent to 1 μm.

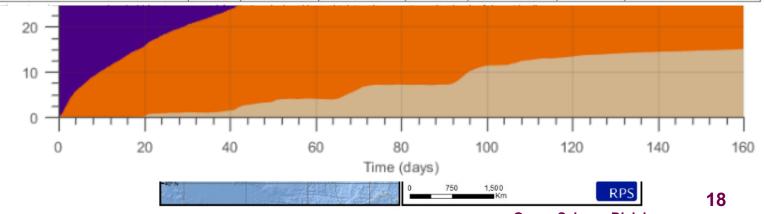
SIMAP Model Outputs

- Stochastic Outputs (Consequence)
 - Probability and Minimum time of socioeconomic and ecological threshold exceedances for surface, shoreline, and water column environmental compartments.
 - Read together: "There is X% probability that oil is predicted to exceed the identified threshold at a specific location, and this exceedance could occur in as little as Y days."
 - Threshold exceedance stats.


Stochastic Scenario Para	ameters	Areas	Exceeding Threshold	(km²)		
Component and Threshold	Probability Contour or Bin	Annual Results	Winter (ice cover)	Summer (ice-free)		
Surface Oil	1%	3,498,000	3,562,000	3,307,000		
> 0.04 μm, on average	10%	2,796,000	2,893,000	2,698,000		
	90%	1,490,000	1,499,000	1,520,000		
Water Column Dissolved	1%	254,300	274,200	244,000		
Hydrocarbons > 1 μg/L at some depth	10%	199,800	212,900	188,100		
within the water column	90%	72,930	78,000	71,710		
	Lengths Exceeding Threshold (km)					
	1 - 5%	2,596	2,054	1,737		
Shoreline Contact with Oil	5 - 15%	2,334	1,939	1,861		
> 1 g/m², on average	15 – 25%	671	510	698		
	25 – 50%	211	358	138		

	7	with order	XC MARKET AND AND	STATE OF STATE OF STATE OF		
Scenario	Release Location	Scenario Timeframe	Average Probability of Shoreline Oil Contact (%)	Maximum Probability of Shoreline Oil Contact (%)	Minimum Time to Shore (days)	Maximum Time to Shore (days)
		Annual	8	33	6	155
115-day release	Terra Nova	Winter	9	9 37 6	160	
		Summer	8	31	17	160

SIMAP Model Outputs


- Deterministic Outputs (Consequence)
 - For each representative deterministic simulation provide:
 - Cumulative
 - surface oil thickness
 - In-water concentration
 - Shoreline & Sediment oil
 - Mass Balance
 - Areas, lengths, and volumes exceeding thresholds

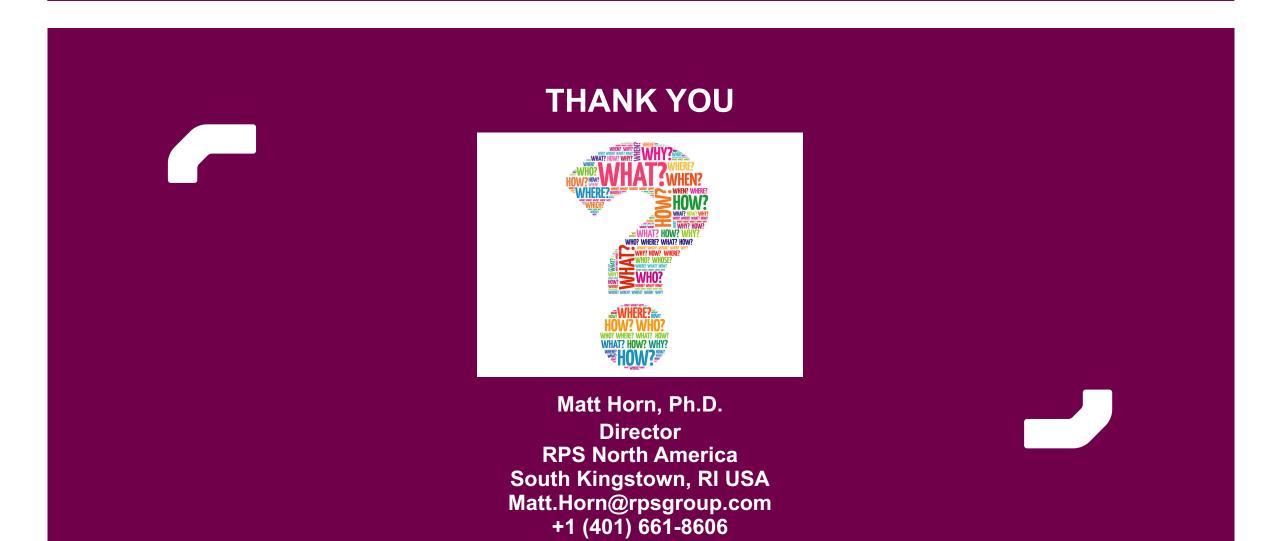
Subsurface Release 1,283,040 m³ Release Begins: January 21,2008 11:26, 115 Day Release Modelled for 160 Days

Surface Oil Thickness for the 95th Percentile Surface Oil Thickness Case

Scenario Name	Site	Released Volume	Approximate Surface Area exceeding thickness thresholds (km²)		Approximate Shore Length exceeding mass per unit area thresholds (km)		Approximate Subsurface Volume exceeding THC threshold (km³)	
			Socio-economic (0.04 µm)	Ecologic (10 μm)	Socio-economic (1 g/m²)	Ecologic (100 g/m²)	Socio-economic* (1 μg/L)	
	Subsurface Blowout Releases							
95 th percentile surface oil exposure case- 115 d	Terra	1,283,040 m³	2,407,000	787,200	1,337	1,300	88,650	
95 th percentile water column case- 115 d	Nova		1,283,040 m ³	2,673,000	661,900	515	469	70,050
95 th percentile shoreline contact case- 115 d	FPSO		3,057,000	642,200	3,947	3,735	115,400	
	Surface/Subsurface Batch Spills							
Surface Batch Spill of 55 m ³	Terra	55 m ³	26,150	3	-	9.5	29	
Subsurface Batch Spill of 120 m ³	Nova FPSO	120 m³	28,480	1	-	1-	40	

Modeling Wrap Up

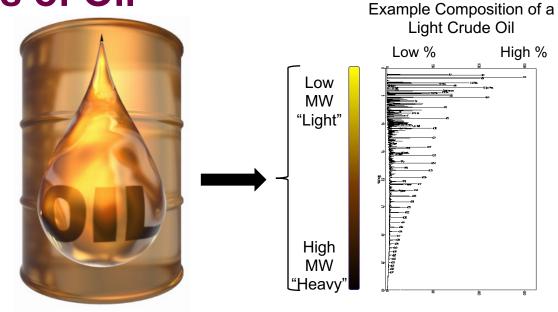
- OILMAPDeep & SIMAP can be used to predict subsurface blowouts, as well as in-water, and surface releases
 - where oil would move,
 - how long it will take to get there,
 - how much would be anticipated, with
 - site-specific and season-specific accuracy.
- Modeling is being requested more frequently by regulators and stakeholders with more detailed EIS's being required, ALE's, and COSRP's (planning and preparedness).
- Model results can be used to communicate the range of potential effects following a release to aid in the decisionmaking processes, planning, preparedness, and environmental assessment. They can also inform oil spill response plans, exercises & drills for hypothetical or realworld releases with and without response options.


Assertions / Conclusions

- Energy Transition is underway but progressing slowly. Dependence on hydrocarbons will continue for decades.
- Asset Life Extension Projects may reduce costs to maintain production capacity and circumvent more timeconsuming regulatory hurdles around new infrastructure.
- Using Historical release data, Project-Specific data, and Site-Specific geographic and environmental characteristics allows for a robust approximation of the range of likelihood and potential for impacts.
- More modeling is being requested more frequently by regulators, stakeholders, & industry for use in EIA, EIS, NEBA/SIMA, OSRP, and more.
- Considered Together, PROBABILITY and CONSEQUENCE assessments inform operators and regulators about the **RISK** of new or continued operations to help them make informed decisions around Asset Life Extension.

RPS Overview: Science and Technology

- Global science and technology solutions company.
 Through consulting, environmental modeling, and application development, RPS helps a diverse range of clients solve their issues of concern.
- Environmental scientists, software developers and engineers, based in Rhode Island.
- Since 1979 and in over 100 countries, provide services and custom solutions and modeling to sectors including energy, environment, construction, defense, security, emergency management, transportation, and shipping.
- Scientists and engineers within RPS are developers and users of OILMAP, SIMAP, OILMAPLand, CHEMMAP, SARMAP, MUDMAP, OceansMap, etc.



<u>__</u>

Chemical Parameters of Oil

Oil is a combination of 10's-100's of thousands of chemical compounds (e.g. hydrocarbons)

Each oil has a different composition

Each line is a different chemical

Each chemical has different properties

Simplify each oil by grouping like-compounds (pseudo-component approach):

Characteristic	Volatile and Highly Soluble	Semi-volatile and Soluble	Low Volatility and Slightly Soluble	Residual (non-volatile and very low solubility)
Distillation cut	1	2	3	4
Boiling Point (°C)	< 180	180 - 265	265 - 380	>380
Molecular Weight	50 - 125	125 - 168	152 - 215	> 215
$Log(K_{ow})$	2.1-3.7	3.7-4.4	3.9-5.6	>5.6
Aliphatic pseudo- components: Number of Carbons	volatile aliphatics: C4 – C10	semi-volatile aliphatics: C10 – C15	low-volatility aliphatics: C15 – C20	non-volatile aliphatics: > C20
Aromatic pseudo- component name: included compounds	MAHs: BTEX, MAHs to C3-benzenes	2 ring PAHs: C4- benzenes, naphthalene, C1-, C2-naphthalenes	3 ring PAHs: C3-, C4- naphthalenes, 3-4 ring PAHs with $\log(K_{ow}) < 5.6$	$\frac{>4}{\log(K_{\text{ow}})}$ > 5.6 (very low solubility)

rps

Biological Exposure Assessment

Smothering / Coating

(floating and shoreline oil)

- Thermal Regulation (birds and mammals)
- Mechanical (smothering, prevention of uptake and depuration, interference with motility, etc.)
- Adsorption of toxic compounds (via skin or gut)

Toxicity

(dissolved hydrocarbons)

- Requires uptake into tissues
- Dissolved components
- Acute and chronic

Mechanical Interference

(subsurface oil droplets)

- Clogging of feeding appendages and gills
- Impeding movements

Behavioral Interference

(floating and shoreline oil)

- Avoidance (leave area or shut down)
- Attraction (more exposure)

