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During the 2017 through 2019 hurricane seasons, multiple hurricanes inflicted severe damage to 
communities and coastal resources over large areas of the U.S. Southeast and Gulf Coast, depositing 
large amounts of debris in coastal waters and along shorelines and causing numerous spills. Prior to this, 
in 2012, Hurricane Sandy caused similar impacts in the Northeast. Beginning with Hurricane Sandy and 
evolving under later responses, NOAA conducted mapping of debris accumulations and specific items of 
interest that may pose an oil spill concern, such as vessels and tanks. This mapping has been 
traditionally accomplished via manual digitization of debris items and targets, a method still widely 
employed (e.g., Moy et al., 2018) for both operational and scientific debris mapping.  

To improve timely and accurate mapping of vessels and debris in coastal shallow subtidal, intertidal, and 
supratidal regions following tropical storm, tsunami, or other debris-generating events in coastal areas, 
NOAA is developing a rapid and operational pipeline for automated processing of high-resolution 
remotely sensed imagery such as generated by NOAA’s National Geodetic Survey (NGS). Once 
operationalized, the goal is to enable these automated pipelines to operate on volumes of imagery 
typically acquired in post-disaster scenarios on timescales of hours to generate initial operational 
products. 

As a first step, training data and the accompanying imagery from previous tropical storm responses 
were used to develop and train models and post-processing steps for both 1.) synoptic image processing 
for mapping of overall generic debris density; and 2.) mapping of specific debris item types of HAZMAT 
concern. For mapping of overall debris density, we used the corpus of training data collected after 
Hurricane Sandy and Hurricane Rita, as well as limited data from Hurricane Laura in 2020.  

These data were used to train, calibrate, and evaluate a convolutional neural network (CNN) model for 
mapping areas with generic intertidal debris items present in natural areas. The final generic debris 
CNN-based model utilized an image segmentation and classification U-net CNN architecture 
(Ronneberger et al., 2015) trained with a Resnet34 backbone via transfer learning. The model was 
implemented in Python using the Pytorch deep-learning libraries (Paszke et al., 2019), as well as the 
deep-learning library available from ESRI for ArcGIS Pro (ESRI, 2020).  

For mapping vessels specifically, we used the corpus of training data collected after Hurricanes Irma and 
Maria to train, calibrate, and evaluate a CNN model for identifying vessels. A training dataset was 
prepared of image chips representing most vessels mapped as part of the Emergency Support Function 
10 response (ESF-10; a legal framework for Federal support in response to an actual or potential 
hazardous materials discharge) during Hurricanes Irma and Maria and supplemented with additional 
non-ESF-10 vessel location from Hurricane Irma. The final vessel-detection model uses region-based 



convolutional neural network (R-CNN) for object-detection using the Faster R-CNN architecture (Ren et 
al., 2015) as implemented via Pytorch deep-learning library combined with the deep-learning library 
available from ESRI for ArcGIS Pro. 

These models were then tested using independent imagery and manually identified debris items from 
other independent responses. These tests were conducted for areas impacted by landfall of Hurricane 
Sally in the north central Gulf of Mexico in 2020, and Hurricane Ida in western Louisiana in 2021. To 
evaluate model performance, we computed the percentage of manually identified target data within the 
mapped areas for each storm that were within 50 meters (m) of a vessel detection bounding box or 
debris item location. Figures 1 and 2 below depict model results with post-storm imagery. 

The vessel model component was found to reliably identify most vessels identified as of concern via 
manual mapping by analysts. Further, the performance of this model is generally insensitive to off-nadir 
angle, image exposure, and limited cloud cover present in the post-storm imagery. For a broad range of 
vessel sizes, the vessel detection model is relatively insensitive to vessel location (on land, docked, at 
anchor or underway), orientation (upright, listing, capsized), condition (aground, afloat), or type 
(recreational, commercial, sailboat). Vessel model performance is better in developed, residential, and 
wetland areas and worse in upland and beach areas.  

The debris model component output clearly represents patterns in distribution storm-generated debris 
in natural intertidal areas. Large debris accumulations along levees and swash lines are easily visible in 
the point data output. There was only a weak relationship between the distribution of non-vessel debris 
items of concern (tanks, drums, containers), and those mapped by the debris model. While the model 
reproduces the spatial distribution of accumulation of storm generated debris in natural areas well, the 
distribution of manually identified targets of particular concern for either incident was not very closely 
related to the spatial distribution of debris in general. Further there are simply far fewer non-vessel 
items of concern, as compared with vessels, so it is difficult to draw conclusions about the utility of this 
model component for post-disaster oil spill risk assessments. 

Primary findings and lessons-learned: 

• Debris model performance well suited for identifying large aggregations of general debris in 
natural intertidal areas, and adjacent subtidal and upland areas  

• Vessel model performance adequate for improving speed and accuracy of vessel target 
identification by manual analysts  

• Processing time on suitable commodity computing hardware is adequate for overnight/daily 
processing of typical image volumes 

• Recommended routine deployment of these models following collection of post-storm imagery  
• The best use of the model output at present is to improve efficiency and accuracy of manual 

review by mapping analysts; inspection by analysts remains critical for identifying false positives 
and classifying vessel condition 

• Recommend masking areas for model processing to only include intertidal or nearshore areas 
and avoid processing extensive open-water or upland areas within imagery extents  

• Improvements to accuracy of both model components are possible though the inclusion of 
additional training data including from both Hurricanes Ida and Sally 



• Post-detection vessel status classification model component to identify capsized, sunken, or 
grounded status after vessel detection may improve utility of modeling pipeline  

• Additional object-specific model components are likely to improve overall utility of model 
output, including barges, large commercial vessels, tanks, and on-water sheen. 

 

 

  



  

  

Figure 1. Typical examples of automated debris item mapping model output from Hurricane Sally (left) 
and Hurricane Ida (right) in both natural and developed areas.  

 



  

  

Figure 2. Top: Typical examples of automated vessel mapping model output from Hurricane Sally (left) 
and Hurricane Ida (right) for both inland and coastal areas and large and small vessel sizes. 
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