Production optimization and characterization of trehalose lipid-based biodispersants for oil spill response

Qinhong Cai, Baiyu Zhang*, Zhiwen Zhu, Bing Chen
Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, Canada, A1B 3X5

Introduction

- **Biodispersants**
 - Use biosurfactants produced by microorganisms to replace the chemically synthetic surfactants in dispersant formula
 - Advantages of biosurfactants (Muthusamy et al., 2008)
 - Low toxicity • High Biodegradability
 - More effective and stable even at extreme conditions
 - Can be produced from various sources (e.g., industrial wastes)
 - Simple and inexpensive procedures

- **Trehalose lipid-based biodispersants**
 - Trehalose lipids produced by *Rhodococcus erythropolis* were found with superior oil dispersion efficiency in our previous study (Cai et al., 2016) when compared with some prevalent biosurfactants (e.g., rhamnolipid, surfactin, and elsanol).

- **Challenges and opportunities**
 - Bottleneck of biosurfactant application • High production cost and low yields.
 - In our previous study, mutagenesis was applied to enhance productivity • We generated mutant M36, which has more effective and stable even at extreme conditions biosurfactants (Franzetti et al., 2010)

Objectives

- To optimize the fermentation conditions for the production of trehalose lipids using *Rhodococcus erythropolis* mutant M36
- To investigate the effect of activated carbon (AC) as the solid carrier in assisting the production
- To evaluate the performance of the optimized product • Critical micelle concentration (CMC), dispersion effectiveness, toxicity, and biodegradability

Methodology

- **Minimum resolution V design**
 - Design Type: Minimum Run Resolution V
 - Runs: 42
 - Center Points: 4

<table>
<thead>
<tr>
<th>Factor</th>
<th>Name</th>
<th>Units</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AC</td>
<td>g/L</td>
<td>1</td>
<td>19</td>
<td>10</td>
<td>8.56</td>
</tr>
<tr>
<td>B</td>
<td>Salinity</td>
<td>g/L</td>
<td>10</td>
<td>30</td>
<td>20</td>
<td>9.51</td>
</tr>
<tr>
<td>C</td>
<td>pH</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>6.5</td>
<td>1.43</td>
</tr>
<tr>
<td>D</td>
<td>Carbon</td>
<td>%</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0.95</td>
</tr>
<tr>
<td>E</td>
<td>Nitrogen</td>
<td>g/L</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0.95</td>
</tr>
<tr>
<td>F</td>
<td>Mg</td>
<td>g/L</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.10</td>
</tr>
<tr>
<td>G</td>
<td>Ca</td>
<td>g/L</td>
<td>0.01</td>
<td>0.09</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>H</td>
<td>Fe</td>
<td>g/L</td>
<td>0.01</td>
<td>0.09</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

 Response: Units
 - Total carbohydrate: mg

- **Product extraction**
 - Extracted with 75% formic acid: • Neutralizing and washing with water phase
 - Extracted with 1 M NaOH solution: • Rotary evaporation

- **Performance evaluation**
 - To evaluate the performance of the optimized product • Critical micelle concentration (CMC), dispersion effectiveness, toxicity, and biodegradability

Results

- **Production optimization**
 - ANOVA for selected factorial model
 - Analysis of variance table (Partial sum of squares - Type III)

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F Value</th>
<th>p-value</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-AC</td>
<td>54.00</td>
<td>1</td>
<td>54.00</td>
<td>17.70</td>
<td>0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>D-Carbon</td>
<td>25.35</td>
<td>1</td>
<td>25.35</td>
<td>18.04</td>
<td>0.0002</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>F-Mg</td>
<td>15.25</td>
<td>1</td>
<td>15.25</td>
<td>10.85</td>
<td>0.0024</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>G-Ca</td>
<td>15.17</td>
<td>1</td>
<td>15.17</td>
<td>10.80</td>
<td>0.0024</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>H-Fe</td>
<td>26.50</td>
<td>1</td>
<td>26.50</td>
<td>18.86</td>
<td>0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>FG</td>
<td>14.91</td>
<td>1</td>
<td>14.91</td>
<td>10.61</td>
<td>0.0026</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>FH</td>
<td>30.67</td>
<td>1</td>
<td>30.67</td>
<td>21.82</td>
<td>0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Cor Total</td>
<td>222.85</td>
<td>41</td>
<td>5.40</td>
<td>4.26</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

 - **Dispersion effectiveness**
 - CMC < 0.215 g/L
 - Weathered ANS crude oil
 - Both dispersants used at 2.5 CMC

 - **Toxicity**
 - Microtox® Toxicity test
 - Microtox® Toxicity test

Conclusions

- Concentrations of AC, carbon source, Mg2+, Ca2+, and Fe2+ were significant factors affecting the productivity, while salinity (1%-3%), pH (5-8) and concentration of nitrogen source (1-3 g/L) were insignificant factors.
- AC was found to have negative impact on the production.
- Production conditions for trehalose-lipid was optimized using response surface methodology.
- Trehalose-lipid based biosurfactants performed comparable with Corexit 9500A in terms of dispersion effectiveness, while having lower toxicity and higher biodegradability.

References

Acknowledgement

The authors would like to express the gratitude to the Natural Sciences and Engineering Research Council of Canada (NSERC), and Canada foundation for innovation (CFI) for their support.